Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent advancements in thermoplastics within the polyaryletherketone (PAEK) family have enhanced additive manufacturing (AM) potential in fields like aerospace and defense. Polyetheretherketone (PEEK), the best-studied PAEK, faces limitations in AM due to its fast crystallization, which causes poor inter-filament bonding and warping. This study investigated alternative, slow-crystallizing PAEK polymers: polyetherketoneketone (PEKK-A) and AM-200, a PEEK-based copolymer. Both can be printed in an amorphous state and then annealed to improve crystallinity and mechanical properties. Despite their potential, these materials have been minimally explored for AM. Our analysis compared the mechanical performance of as-printed and annealed samples and showed that slow-crystallizing PAEKs outperform fast-crystallizing PEEK. As-printed PEKK-A and AM-200 parts reached tensile strengths of 69 MPa and 47 MPa, respectively, which are about 80% of the values for injection-molded parts. In contrast, PEEK achieves only 25% due to poor inter-layer bonding. Annealing increased crystallinity (15.7% for PEKK-A, 19% for AM-200), simultaneously leading to a coalescence of smaller pores into larger ones, which affected mechanical integrity. Annealing strengthened the printed filament direction, while Z-direction strength remained limited by interlayer adhesion. Our work provides new insights into optimizing these relationships to expand the applicability of PAEK in additive manufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym16233354 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644239 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!