AI Article Synopsis

  • Itraconazole (ITZ) is a broad-spectrum antifungal with low oral bioavailability due to poor solubility and potential dose-related side effects.
  • Researchers aimed to improve ITZ's solubility using various water-soluble polymers and developed personalized, programmable release tablets.
  • The study found that using hot melt extrusion (HME) combined with 3D printing can enhance ITZ solubility and allow for precise control of its release, offering a promising method for personalized drug delivery.

Article Abstract

Itraconazole (ITZ), a broad-spectrum triazole antifungal agent, exhibits remarkable pharmacodynamic and pharmacokinetic properties. However, the low solubility of ITZ significantly reduces its oral bioavailability. Furthermore, it has been reported that this medication can result in dose-related adverse effects. Therefore, the objective of this study was to enhance the solubility of ITZ through the utilization of various polymers and to manufacture personalized and programmable release ITZ tablets. Five different polymers were selected as water-soluble carriers. Thirty percent / ITZ was mixed with seventy percent / of the polymers, which were then extruded. A series of physical and chemical characterization studies were conducted, including DSC, PXRD, PLM, and in vitro drug release studies. The results demonstrated that ITZ was dispersed within the polymers, forming ASDs that markedly enhanced its solubility and dissolution rate. Consequently, soluplus was employed as the polymer for the extrusion of ITZ-loaded filaments, which were subsequently designed and printed. The in vitro drug release studies indicated that the release of ITZ could be regulated by modifying the 3D structure design. Overall, this study found that the combination of HME and 3D printing technologies could represent an optimal approach for the development of personalized and precise drug delivery dosages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644310PMC
http://dx.doi.org/10.3390/polym16233302DOI Listing

Publication Analysis

Top Keywords

hme printing
8
printing technologies
8
solubility itz
8
release itz
8
vitro drug
8
drug release
8
release studies
8
itz
7
polymers
5
improve solubility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!