The use of polymer materials in various fields has increased significantly due to their ease of thermoforming and relatively low production costs. The production volume of these materials is extremely high, and according to forecasts from global statistical centers, it is expected to continue rising in the future. However, the extensive use and easy availability of polymeric materials have caused significant ecological problems. The world faces large amounts of polymer waste and environmental pollution. Plastic recycling remains challenging due to issues related to sorting polymer waste and separating it according to polymer types. Recycling certain plastics requires only a quarter of the energy needed to produce new plastic. To address this, circular economy principles should be applied to 3D printing products made from polymeric materials. A particularly wide application of these technologies is found when polymeric materials are used due to their low cost, low melting temperatures, and other advantageous properties. This paper investigates the impact of plastic recycling on the quality of 3D-printed products. During the research, samples were 3D printed and tested using both virgin and recycled PLA, ABS, and PET-G materials. The samples underwent static and dynamic tests to determine their mechanical properties, such as tensile strength, elongation, and impact resistance. The research results showed that the properties of recycled polymer materials deteriorate, with relative elongation of recycled and 3D-printed materials decreased by 16-45%. Despite this, recycled polymer materials can still be used, but it is necessary to account for the reduction in plasticity when creating products that will be exposed to dynamic loads. The impact strength is reduced by 6% for PLA, 54% for ABS, and 58% for PET-G. Additionally, the research included tests on samples printed with 3D printing technology that were exposed to UV irradiation. The results indicated similar dependences, as UV exposure also affects the reduction of material plasticity. After 66 Wh/m of UV radiation, the tensile strength of PET-G and PLA decreased by 17%, while ABS showed a reduction of about 5%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644154PMC
http://dx.doi.org/10.3390/polym16233292DOI Listing

Publication Analysis

Top Keywords

polymer materials
16
polymeric materials
12
materials
10
polymer waste
8
plastic recycling
8
samples printed
8
tensile strength
8
recycled polymer
8
polymer
7
influence recycling
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Advancements in microalgal biomass conversion for rubber composite applications.

Sci Rep

January 2025

Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.

Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.

View Article and Find Full Text PDF

On-site biosignal amplification using a single high-spin conjugated polymer.

Nat Commun

January 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China.

On-site or in-sensor biosignal transduction and amplification can offer several benefits such as improved signal quality, reduced redundant data transmission, and enhanced system integration. Ambipolar organic electrochemical transistors (OECTs) are promising for this purpose due to their high transconductance, low operating voltage, biocompatibility, and suitability for miniaturized amplifier design. However, limitations in material performance and stability have hindered their application in biosignal amplification.

View Article and Find Full Text PDF

Stress-induced self-assembly of hierarchically twisted stripe arrays.

Sci Bull (Beijing)

December 2024

Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:

Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!