Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers.

Polymers (Basel)

Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia.

Published: November 2024

Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644149PMC
http://dx.doi.org/10.3390/polym16233267DOI Listing

Publication Analysis

Top Keywords

micro- mesoporous
12
macromolecular architecture
8
architecture synthesis
8
synthesis micro-
8
mesoporous polymers
8
synthesis
4
polymers
4
polymers polymers
4
polymers micro-
4
mesoporous structure
4

Similar Publications

Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.

View Article and Find Full Text PDF

Design and manufacture of cathode materials, with suitable pore structure and high electrical conductivity to matching zinc anode, solving the problem of dissolution and structural degradation of cathode materials for zinc ion batteries (ZIBs), is great significance to the development of ZIBs. Herein, Vanadium Nitride (VN) uniformly decorated N-doped micro/mesoporous carbon nanofibers (VN/N-MCNF) with appropriate porous and reactive sites for Zn2+ is prepared by using V-MOF, as important precursor via electrostatic spinning and pyrolysis technique. As a cathode electrode for ZIBs, the VN/N-MCNF is suitable for diffusion and adsorption of large-sized solvated structured [Zn(H2O)6]2+, for its abundant micro/mesoporous structure and good electrical conductivity.

View Article and Find Full Text PDF

The textural properties of synthetic and natural clays in the sodium form and exchanged with tetramethylammonium cations (TMA) were characterized using N and Ar physisorption isotherms at cryogenic temperatures. Specific surface areas and micro/mesoporous volumes were determined using the BET and the models. The analysis requires the use of reference isotherms measured at the same temperature on the surface of non-porous materials with an identical chemical composition.

View Article and Find Full Text PDF

Uniform single-crystal mesoporous metal-organic frameworks.

Nat Chem

January 2025

Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.

The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!