We present first-principles results on the electronic and magnetic properties of the cubic bulk β-phase of Fe2O3. Given that all Fe-Fe magnetic couplings are expected to be antiferromagnetic within this high-symmetry crystal structure, the system may exhibit some signature of magnetic frustration, making it challenging to identify its magnetic ground state. We have analyzed the possible magnetic phases of the β-phase, among which there are ferrimagnets, altermagnets, and Kramers antiferromagnets. While the α-phase is an altermagnet and the γ-phase is a ferrimagnet, we conclude that the magnetic ground state for the bulk β-phase of Fe2O3 is a Kramers antiferromagnet. Moreover, we find that close in energy, there is a bulk d-wave altermagnetic phase. We report the density of states and the evolution band gap as a function of the electronic correlations. For suitable values of the Coulomb repulsion, the system is a charge-transfer insulator with an indirect band gap of 1.5 eV. More in detail, the unit cell of the β-phase is composed of 8Fea atoms and 24Feb atoms. The 8Fea atoms lie on the corner of a cube, and their magnetic ground state is a G-type. This structural phase is composed of zig-zag chains Fea-Feb-Fea-Feb with spin configuration ↑-↑-↓-↓ along the 3 directions such that for every Fea atoms there are 3Feb atoms. As the opposite to the γ-phase, the magnetic configuration between the first neighbor of the same kind is always antiferromagnetic while the magnetic configuration between Fea and Feb is ferro or antiferro. In this magnetic arrangement, first-neighbor interactions cancel out in the mean-field estimation of the Néel temperature, leaving second-neighbor magnetic exchanges as the primary contributors, resulting in a Néel temperature lower than that of other phases. Our work paves the way toward the ab initio study of nanoparticles and alloys for the β-phase of Fe2O3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643164 | PMC |
http://dx.doi.org/10.3390/molecules29235751 | DOI Listing |
Waste Manag
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada.
This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
An ammonium perchlorate (AP) composite system with double-coating encapsulation based on the interfacial polymerization behavior of dopamine (DA) in Pickering emulsions was designed to enhance the combustion performance of HTPB-based propellants. The composite system proved highly effective in mitigating the agglomeration issues associated with iron oxide nanoparticles (FeO NPs) as catalysts, with the AP exhibiting superior performance compared to the composite comprising pure FeO NPs. The results of the thermal decomposition experiments showed that the HTD temperature of AP@PDA@FeO was reduced to 318.
View Article and Find Full Text PDFSci Adv
January 2025
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
Chemodynamic therapy (CDT) is a promising and potent therapeutic strategy for the treatment of cancer. We developed a DNA origami-based enzymatic cascade nanoreactor (DOECN) containing spatially well-organized Au nanoparticles and ferric oxide (FeO) nanoclusters for targeted delivery and inhibition of tumor cell growth. The DOECN can synergistically promote the generation of hydrogen peroxide (HO), consumption of glutathione, and creation of an acidic environment, thereby amplifying the Fenton-type reaction and producing abundant reactive oxygen species, such as hydroxyl radicals (•OH), for augmenting the CDT outcome.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Jingdezhen Ceramic Research Institute, Jingdezhen 333001, China.
The Guangyuan kiln, located in the Sichuan Province, Southwest China during the Song Dynasty (960-1279 A.D.), is renowned for its high-temperature iron-series glazed wares, including pure black glazed ware, hare's fur glazed ware, glossy brown glazed ware, and matte brown glazed ware.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!