2-Arylethylamines are presented in several natural bioactive compounds, as well as in nitrogen-containing drugs. Their ability to surpass the blood-brain barrier makes this family of compounds of especial interest in medicinal chemistry. Asymmetric methodologies towards the synthesis of 2-arylethylamine motives are of great interest due to the challenges they may present. Thus, a concise metal-free review presenting recent advances in the asymmetric synthesis of 2-arylethylamines is presented, covering last-millennium studies, considering different methodologies towards the aforementioned motif, including chiral induction, organocatalysis, organophotocatalysis and enzymatic catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643920 | PMC |
http://dx.doi.org/10.3390/molecules29235729 | DOI Listing |
Int J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia.
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang Uiversity, Chemistry, 866 Yuhangtang Road, 310058, Hangzhou, CHINA.
Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98% ee.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Bioscience and Bioengineering, Fuzhou University, Fuzhou 360105, China. Electronic address:
Baeyer-Villiger monooxygenases (BVMOs) can catalyze the asymmetric sulfoxidation to form pharmaceutical prazoles in environmentally friendly approach. In this work, the thermostable BVMO named PockeMO had high sulfoxidation activity towards rabeprazole sulfide to form (R)-rabeprazole but demonstrated significant overoxidation activity to form undesired sulfone by-product. To address this issue, the enzyme was engineered based on the computer assisted comparison for the substrate binding conformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!