Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice.

Molecules

Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.

Published: December 2024

Selenium is an essential trace element for the human body. However, its intake is usually low. Therefore, the production and utilization of selenium-enriched food are currently a research hotspot. Despite the remarkable scientific interest in this topic, only a few of the numerous studies focus on commercially available products. This study examined the nutritional quality, physical and chemical properties, cooking characteristics, and eating quality of four commercially available hot-selling rice types, both selenium-enriched and non-selenium-enriched, and discovered that selenium-enriched rice outperforms ordinary rice in terms of both nutritional quality and taste. In addition, we employed the gas chromatography-ion mobility spectrometry (GC-IMS) technique to evaluate the volatile chemicals of rice. Some of the chemicals that made selenium-rich rice taste different from regular rice were pentanal, (E)-2-Hexen-1-ol, ethyl-3-methyl butanoate, 2-furan methanol acetate, ethyl heptanoate, ethyl hexanoate, methyl hexanoate, isopentyl pentanoate, and ethyl butyrate. We looked into the metabolite profiles of rice using LC-MS-based untargeted metabolomics to obtain a better idea of the different metabolites that are found in selenium-enriched rice compared to regular rice. We identified a total of 522 metabolites and screened 182, 227, and 100 differential metabolites in selenium-enriched (A) vs. non-selenium-enriched rice (B/C/D) groups, respectively. This study revealed that selenium primarily influenced the metabolism of D-amino acids, starch, sucrose, and linoleic acid in rice. This study systematically analyzed the quality differences between selenium-enriched and non-selenium-enriched rice available on the market. For consumers, it is essential to understand the quality of selenium-rich rice on the market to guide the purchase of rice.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules29235703DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643911PMC

Publication Analysis

Top Keywords

rice
15
selenium-enriched rice
12
selenium-enriched non-selenium-enriched
12
nutritional quality
8
selenium-rich rice
8
regular rice
8
metabolites selenium-enriched
8
non-selenium-enriched rice
8
rice market
8
selenium-enriched
7

Similar Publications

Background: Vancomycin, an antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA), is frequently included in empiric treatment for community-acquired pneumonia (CAP) despite the fact that MRSA is rarely implicated in CAP. Conducting polymerase chain reaction (PCR) testing on nasal swabs to identify the presence of MRSA colonization has been proposed as an antimicrobial stewardship intervention to reduce the use of vancomycin. Observational studies have shown reductions in vancomycin use after implementation of MRSA colonization testing, and this approach has been adopted by CAP guidelines.

View Article and Find Full Text PDF

Genome-wide association study of anterior uveitis.

Br J Ophthalmol

December 2024

Department of Ophthalmology and Medical Research Center, Oulu University Hospital; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.

Background/aims: The purpose of this study is to define genetic factors associated with anterior uveitis through genome-wide association study (GWAS).

Methods: In this GWAS meta-analysis, we combined data from the FinnGen, Estonian Biobank and UK Biobank with a total of 12 205 anterior uveitis cases and 917 145 controls. We performed a phenome-wide association study (PheWAS) to investigate associations across phenotypes and traits.

View Article and Find Full Text PDF

Black rice bran (BRB), a valuable byproduct from the rice milling process, possesses numerous pharmacological activities, including antioxidant potential, but information regarding highly efficient extraction methods is scarce. To enhance the extraction efficiency, ultrasonic-assisted extraction coupled with Box-Behnken design (BBD) was used in this study to maximize the total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and antioxidant capacity of BRB extract. The BBD results showed that 57% ethanol at 50°C and pH 3.

View Article and Find Full Text PDF

No FDA-approved medications for methamphetamine (MA) use disorder (MUD) are available. Suvorexant (SUVO), a dual orexin receptor antagonist that is FDA approved for insomnia treatment, reduces MA self-administration and MA-induced reinstatement responding in preclinical studies. SUVO may also reduce MA use by targeting substance use risk factors, including insomnia, stress, cue reactivity, and craving.

View Article and Find Full Text PDF

The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals.

Plant Commun

December 2024

Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!