A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Review of the Fabrication of Pinhole-Free Thin Films Based on Electrodeposition Technology: Theory, Methods and Progress. | LitMetric

Pinhole defects in thin films can significantly degrade their physical and chemical properties and act as sites for electrochemical corrosion. Therefore, the development of methods for the preparation of pinhole-free films is crucial. Electrodeposition, recognised for its efficiency and cost-effectiveness, shows great potential for applications in electrochemistry, biosensors, solar cells and electronic device fabrication. This review aims to elucidate the role of nucleation and growth models in understanding and optimising the electrodeposition process. Key parameters, such as crystal structure, orientation, surface morphology and defect control, are highlighted. In addition, the causes of pinhole defects, the effects of impurities and the potential and electrolyte composition on the deposited films are discussed. In particular, methods for minimising pinhole defects and two exemplary cases for a compact layer in relatively large-scale perovskite solar cells and nano-scale ultramicroelectrodes are discussed, exploring the influence of surface morphology, thickness and fabrication size under current common film preparation experiments. Finally, the critical aspects of controlled preparation, theoretical and technological advances, and the ongoing challenges in the field are provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643968PMC
http://dx.doi.org/10.3390/molecules29235615DOI Listing

Publication Analysis

Top Keywords

pinhole defects
12
thin films
8
solar cells
8
surface morphology
8
review fabrication
4
fabrication pinhole-free
4
pinhole-free thin
4
films
4
films based
4
based electrodeposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!