We have shown that the adsorption of Cu ions on various metal oxides, depending on the pH of the solution, can be described assuming the formation of only two surface complexes with surface hydroxyl groups SOH: SOCu(OH) and SOCu. Using an ion-selective electrode for Cu, we determined the adsorption edges, i.e., the dependence of the amount of adsorbed metal expressed as a percentage depending on the solution pH for three oxides: TiO, AlO, and SiO. The measurements were carried out with high surface coverage where the ratio of the adsorption sites/copper ions in the system were from 2 to 3, depending on the oxide. Simultaneously, with the adsorption edge, the hydrogen surface charge density and the electrokinetic potential of the oxide particles were measured as a function of pH. These three types of experimental data were fitted all together using the surface complexation model (2-pK TLM). In modeling, it was not necessary to consider the precipitation of Cu(OH) on the oxide surface to obtain good agreement with the data. Additionally, it was shown that the presence of charged surface species SOCu (about 10% of total adsorbed copper) was crucial to fit the data for zeta potential.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules29235595DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643607PMC

Publication Analysis

Top Keywords

surface complexation
8
tio alo
8
alo sio
8
surface
8
high surface
8
surface coverage
8
depending solution
8
adsorption
5
application surface
4
complexation modeling
4

Similar Publications

Background: The National Institutes of Health (NIH) Toolbox Cognition Battery is increasingly being used as a standardized test to examine cognitive functioning in multicentric studies. This study examines the associations between the NIH Toolbox Cognition Battery composite scores with neuroimaging metrics using data from the Adolescent Brain Cognitive Development (ABCD) study to elucidate the neurobiological and neuroanatomical correlates of these cognitive scores.

Methods: Neuroimaging data from 5290 children (mean age 9.

View Article and Find Full Text PDF

Metal-Independent Correlations for Site-Specific Binding Energies of Relevant Catalytic Intermediates.

JACS Au

December 2024

SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.

Establishing energy correlations among different metals can accelerate the discovery of efficient and cost-effective catalysts for complex reactions. Using a recently introduced coordination-based model, we can predict site-specific metal binding energies (Δ ) that can be used as a descriptor for chemical reactions. In this study, we have examined a range of metals including Ag, Au, Co, Cu, Ir, Ni, Os, Pd, Pt, Rh, and Ru and found linear correlations between predicted Δ and adsorption energies of CH and O (Δ and Δ ) at various coordination environments for all the considered metals.

View Article and Find Full Text PDF

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a "Signal on" Mode.

Chem Biomed Imaging

December 2024

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!