Non-heme iron is essential for critical neuronal functions such as ATP generation, synaptogenesis, neurotransmitter synthesis, and myelin formation. However, as non-heme iron accumulates with age, excessive levels can contribute to oxidative stress, potentially disrupting neuronal integrity and contributing to cognitive decline. Despite growing evidence linking high brain iron with poorer cognitive performance, there are currently no proven methods to reduce brain iron accumulation in aging or to protect cognitive function from iron's negative effects. Recent studies suggest that nutrition may influence brain iron levels, though the evidence remains limited and mixed. In this review, we explore recent findings, including our own cross-sectional and longitudinal studies, to evaluate the potential effectiveness of healthy diets and specific nutrients in mitigating brain iron accumulation during aging. We also briefly assess the roles of age and gender as factors in the relationship between dietary factors and brain iron load. The limited findings in the literature indicate that dietary choices may impact brain iron levels. In particular, nutrients such as vitamins, antioxidants, iron-chelators, and polyunsaturated fatty acids may slow brain iron accumulation in older adults. Our review highlights the multiple gaps in current knowledge and underscores a critical need for additional research on this important topic.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu16234193DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644366PMC

Publication Analysis

Top Keywords

brain iron
32
iron levels
12
iron accumulation
12
iron
10
brain
8
older adults
8
non-heme iron
8
accumulation aging
8
review association
4
association dietary
4

Similar Publications

Objectives: Understanding the microscopic pathophysiological mechanisms underlying acute ischemic stroke (AIS) is vital for facilitating early clinical diagnosis and intervention. In this study, we aimed to quantitatively assess brain iron changes in gray matter (GM) nuclei in patients with AIS via quantitative susceptibility mapping (QSM).

Methods: Thirty-four patients with AIS and thirty age-and sex-matched healthy controls (HCs) were included.

View Article and Find Full Text PDF

We present the case of a patient who came to the emergency department with a significant decrease in vision and dilated pupil in the left eye. Since neurological pathologies were primarily considered, diffusion brain magnetic resonance imaging (MRI) and brain computed tomography (CT) were requested. After the results were reported as normal, we were consulted.

View Article and Find Full Text PDF

[Cognitive impairment and age-related eye pathology.].

Adv Gerontol

January 2025

M.M.Krasnov Research Institute of Eye Diseases, 11 A, B, Rossolimo str., Moscow 119021, Russian Federation, e-mail:

In developed countries age-related macular degeneration (AMD) and glaucoma are the most common diseases of old age that cause irreversible blindness. Alzheimer's disease (AD), the most prevalent cause of dementia among older adults, is often associated with AMD and glaucoma. Features of AD include extracellular accumulation of β-amyloid (Aβ) and intracellular deposits of hyperphosphorylated forms of tau-protein.

View Article and Find Full Text PDF

Naoqing formula alleviates acute ischaemic stroke-induced ferroptosis via activating /xCT/GPX4 pathway.

Front Pharmacol

December 2024

The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.

Backgrounds: Ferroptosis is a form of regulated cell death. The accumulation of iron in the brain is linked to trigger ferroptosis after an ischaemic stroke (IS). Naoqing formula (NQ) is a traditional Chinese medicine metabolites with the clinical function of activating blood circulation, which is applied to treat IS clinically in China.

View Article and Find Full Text PDF

Introduction: Depression is a prevalent and significant psychological consequence of traumatic brain injury (TBI). Ferroptosis, an iron-dependent form of regulated cell death, exacerbates the neurological damage associated with TBI. This study investigates whether nicorandil, a potassium channel opener with nitrate-like properties known for its antioxidative and neuroprotective effects, can mitigate depression-like behaviors following TBI by modulating ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!