Antioxidant and Antiaging Activity of Thunb. Ethyl Acetate Fraction in .

Nutrients

Department of Food and Biotechnology, Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea.

Published: November 2024

Background/objectives: In aerobic organisms, such as humans, oxygen radicals are inevitably produced. To counteract oxidation, the body generates antioxidant substances that suppress free radicals. However, levels of reactive oxygen species (ROS) increase due to aging and lifestyle factors, leading to exposure to various diseases. While synthetic antioxidants offer advantages like high stability, low cost, and availability, their safety remains controversial. This study aimed to investigate the antioxidant and antiaging activities of (HC), which is rich in flavonoids and has excellent antioxidant properties, using as a model.

Methods: Extraction and fractionation of HC were performed to evaluate antioxidant activities (DPPH, ABTS, superoxide radical scavenging activity) and antiaging effects (lifespan). The ethyl acetate fraction (EAF) with the highest activity was selected for further investigation.

Results: The EAF of HC exhibited high levels of polyphenols and flavonoids, presenting the highest DPPH, ABTS, and superoxide radical scavenging activities. This fraction increased the activity of antioxidant enzymes in nematodes in a concentration-dependent manner and provided resistance to oxidative stress, reducing ROS accumulation. Additionally, the fraction enhanced the lifespan of nematodes, improved resistance to heat stress, increased survival rates, and decreased the accumulation of aging pigments (lipofuscin). The expression of daf-2, daf-16, and sir-2.1, proteins directly involved in nematode aging, was confirmed. Liquid chromatography/tandem mass spectrometry identified quercitrin in the HC extract, which may contribute to its antioxidant and antiaging effects.

Conclusions: The EAF of HC demonstrates significant potential for influencing antioxidant and antiaging, as evidenced by functional investigations using .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644624PMC
http://dx.doi.org/10.3390/nu16234168DOI Listing

Publication Analysis

Top Keywords

antioxidant antiaging
16
antioxidant
8
ethyl acetate
8
acetate fraction
8
dpph abts
8
abts superoxide
8
superoxide radical
8
radical scavenging
8
activity
4
antiaging activity
4

Similar Publications

Beyond the Hayflick Limit: How Microbes Influence Cellular Aging.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran. Electronic address:

Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Harnessing Nature's Palette: Exploring Photosynthetic Pigments for Sustainable Biotechnology.

N Biotechnol

January 2025

Institute of Sustainable Processes, University of Valladolid, Spain. Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects.

View Article and Find Full Text PDF

Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N.

View Article and Find Full Text PDF

Resveratrol and extra virgin olive oil are both recognized for their potential protective effects against age-related diseases. This overview highlights their mechanisms of action, health benefits, and the scientific evidence supporting their roles in promoting longevity and cognitive health. A literature search was conducted.

View Article and Find Full Text PDF

The Anti-AGEing and RAGEing Potential of Isothiocyanates.

Molecules

December 2024

Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.

Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!