https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=39683463&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 396834632024121720241218
2072-664316232024Nov27NutrientsNutrientsDietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability-A Narrative Review of Human Interventions.406910.3390/nu16234069Phytic acid is abundant in plant-based diets and acts as a micronutrient inhibitor for humans and non-ruminant animals. Phytases are enzymes that break down phytic acid, releasing micronutrients and enhancing their bioavailability, particularly iron and zinc. Deficiencies in iron and zinc are significant public health problems, especially among populations with disease-associated malnutrition or those in developing countries consuming phytic acid-rich diets. This narrative review aimed to summarize findings from human intervention studies on the interactions between phytic acid, phytase, and micronutrient bioavailability.An extensive PubMed search (1 January 1990 to 8 February 2024) was conducted using MeSH terms (phytic acid, phytase, IP6, "inositol hexaphosphate," micronutrient, magnesium, calcium, iron, zinc). Eligible studies included human intervention trials investigating the bioavailability of micronutrients following (a) phytase supplementation, (b) consumption of phytic acid-rich foods, or (c) consumption of dephytinized foods. In vitro, animal, cross-sectional, and non-English studies were excluded.3055 articles were identified. After the title and full-text review, 40 articles were eligible. Another 2 were identified after cross-checking reference lists from included papers, resulting in 42 included articles. Most studies exploring the efficacy of exogenous phytase (9 of 11, 82%) or the efficacy of food dephytinization (11 of 14, 79%) demonstrated augmented iron and zinc bioavailability. Most phytic acid-rich food-feeding studies (13 of 17, 77%) showed compromised iron and zinc bioavailability.Strong evidence supports decreased iron and zinc bioavailability in phytic acid-rich diets and significant improvements with phytase interventions. Studies of longer periods and within larger populations are needed.ChondrouThiresiaTLaboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.AdamidiNikoletaNLaboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.LygourasDimosthenisDComputer Science Department, Democritus University of Thrace, 65404 Kavala, Greece.Larisa Day Care Center of People with Alzheimer's Disease, Association for Regional Development and Mental Health (EPAPSY), 15124 Marousi, Greece.HirotaSimon ASA0000-0001-5782-1481Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.AndroutsosOdysseasO0000-0002-2849-1994Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.SvolosVaiosV0000-0002-7785-4245Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.Human Nutrition, School of Medicine Dentistry & Nursing, College of Medical Veterinary and Life Sciences, Glasgow G12 8QQ, UK.engJournal ArticleReview20241127
SwitzerlandNutrients1015215952072-66437IGF0S7R8IPhytic AcidEC 3.1.3.266-Phytase0Trace ElementsJ41CSQ7QDSZincIMPhytic Acid6-PhytaseHumansBiological AvailabilityDietary SupplementsTrace Elementspharmacokineticsadministration & dosageZincpharmacokineticsadministration & dosageDietAdultbioavailabilitydephytinizationironmicronutrientphytasephytatephytic acidtrace elementzincS.A.H. and V.S. are scientific consultants for Access Nutrients, a company that markets a phytase-based supplement. Access Nutrients had no role in the design of the study, in the collection, analysis, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results. T.C., N.A., D.L. and O.A. declare no conflicts of interest.
202411102024112120241124202412171150202412171149202412171720241127epublish3968346310.3390/nu16234069nu16234069PMC11643945Gupta R.K., Gangoliya S.S., Singh N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015;52:676–684. doi: 10.1007/s13197-013-0978-y.10.1007/s13197-013-0978-yPMC432502125694676Hadi Alkarawi H., Zotz G. Phytic acid in green leaves. Plant Biol. 2014;16:697–701. doi: 10.1111/plb.12136.10.1111/plb.1213624341824Brouns F. Phytic Acid and Whole Grains for Health Controversy. Nutrients. 2021;14:25. doi: 10.3390/nu14010025.10.3390/nu14010025PMC874634635010899Wang R., Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021;20:2081–2105. doi: 10.1111/1541-4337.12714.10.1111/1541-4337.1271433559386Rimbach G., Pallauf J., Moehring J., Kraemer K., Minihane A.M. Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability—A literature review. Curr. Top. Nutraceutical Res. 2008;6:131–144.Kumar V., Sinha A.K., Makkar H.P., Becker K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010;120:945–959. doi: 10.1016/j.foodchem.2009.11.052.10.1016/j.foodchem.2009.11.052Ma G., Li Y., Jin Y., Zhai F., Kok F.J., Yang X. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur. J. Clin. Nutr. 2007;61:368–374. doi: 10.1038/sj.ejcn.1602513.10.1038/sj.ejcn.160251316929240Dewey K.G. Increasing iron intake of children through complementary foods. Food Nutr. Bull. 2007;28((Suppl. S4)):S595–S609. doi: 10.1177/15648265070284S412.10.1177/15648265070284S41218297897Gibson R.S., Ferguson E.L., Lehrfeld J. Complementary foods for infant feeding in developing countries: Their nutrient adequacy and improvement. Eur. J. Clin. Nutr. 1998;52:764–770. doi: 10.1038/sj.ejcn.1600645.10.1038/sj.ejcn.16006459805226Burgos R., Bretón I., Cereda E., Desport J.C., Dziewas R., Genton L., Gomes F., Jésus P., Leischker A., Muscaritoli M., et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018;37:354–396. doi: 10.1016/j.clnu.2017.09.003.10.1016/j.clnu.2017.09.00329274834MacMaster M.J., Damianopoulou S., Thomson C., Talwar D., Stefanowicz F., Catchpole A., Gerasimidis K., Gaya D.R. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin. Nutr. 2021;40:327–331. doi: 10.1016/j.clnu.2020.05.010.10.1016/j.clnu.2020.05.01032517876Maulana H., Widyastuti Y., Herlina N., Hasbuna A., Al-Islahi A.S.H., Triratna L., Mayasari N. Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed. J. Genet. Eng. Biotechnol. 2023;21:142. doi: 10.1186/s43141-023-00600-y.10.1186/s43141-023-00600-yPMC1067886138008870Herter-Aeberli I., Fischer M.M., Egli I.M., Zeder C., Zimmermann M.B., Hurrell R.F. Addition of Whole Wheat Flour During Injera Fermentation Degrades Phytic Acid and Triples Iron Absorption from Fortified Tef in Young Women. J. Nutr. 2020;150:2666–2672. doi: 10.1093/jn/nxaa211.10.1093/jn/nxaa21132805002Zyba S.J., Wegmüller R., Woodhouse L.R., Ceesay K., Prentice A.M., Brown K.H., Wessells K.R. Effect of exogenous phytase added to small-quantity lipid-based nutrient supplements (SQ-LNS) on the fractional and total absorption of zinc from a millet-based porridge consumed with SQ-LNS in young Gambian children: A randomized controlled trial. Am. J. Clin. Nutr. 2019;110:1465–1475. doi: 10.1093/ajcn/nqz205.10.1093/ajcn/nqz20531504101Monnard A., Moretti D., Zeder C., Steingötter A., Zimmermann M.B. The effect of lipids, a lipid-rich ready-to-use therapeutic food, or a phytase on iron absorption from maize-based meals fortified with micronutrient powders. Am. J. Clin. Nutr. 2017;105:1521–1527. doi: 10.3945/ajcn.116.142976.10.3945/ajcn.116.14297628468891Brnić M., Wegmüller R., Melse-Boonstra A., Stomph T., Zeder C., Tay F.M., Hurrell R.F. Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. J. Nutr. 2016;146:76–80. doi: 10.3945/jn.115.213421.10.3945/jn.115.21342126674764Brnić M., Wegmüller R., Zeder C., Senti G., Hurrell R.F. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J. Nutr. 2014;144:1467–1473. doi: 10.3945/jn.113.185322.10.3945/jn.113.18532224966411Cercamondi C.I., Egli I.M., Mitchikpe E., Tossou F., Hessou J., Zeder C., Hounhouigan J.D., Hurrell R.F. Iron bioavailability from a lipid-based complementary food fortificant mixed with millet porridge can be optimized by adding phytase and ascorbic acid but not by using a mixture of ferrous sulfate and sodium iron EDTA. J. Nutr. 2013;143:1233–1239. doi: 10.3945/jn.113.175075.10.3945/jn.113.17507523761652Troesch B., van Stuijvenberg M.E., Smuts C.M., Kruger H.S., Biebinger R., Hurrell R.F., Baumgartner J., Zimmermann M.B. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age Z-scores in South African children. J. Nutr. 2011;141:237–242. doi: 10.3945/jn.110.129247.10.3945/jn.110.12924721178093Troesch B., Egli I., Zeder C., Hurrell R.F., de Pee S., Zimmermann M.B. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am. J. Clin. Nutr. 2009;89:539–544. doi: 10.3945/ajcn.2008.27026.10.3945/ajcn.2008.2702619106242Bach Kristensen M., Tetens I., Alstrup Jørgensen A.B., Dal Thomsen A., Milman N., Hels O., Sandström B., Hansen M. A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. Eur. J. Nutr. 2005;44:334–340. doi: 10.1007/s00394-004-0529-4.10.1007/s00394-004-0529-415349738Layrisse M., García-Casal M.N., Solano L., Barón M.A., Arguello F., Llovera D., Ramírez J., Leets I., Tropper E. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J. Nutr. 2000;130:2195–2199. doi: 10.1093/jn/130.9.2195.10.1093/jn/130.9.219510958812Sandberg A.S., Hulthén L.R., Türk M. Dietary Aspergillus niger phytase increases iron absorption in humans. J. Nutr. 1996;126:476–480. doi: 10.1093/jn/126.2.476.10.1093/jn/126.2.4768632221Adams C.L., Hambidge M., Raboy V., Dorsch J.A., Sian L., Westcott J.L., Krebs N.F. Zinc absorption from a low-phytic acid maize. Am. J. Clin. Nutr. 2002;76:556–559. doi: 10.1093/ajcn/76.3.556.10.1093/ajcn/76.3.55612197999Armah S.M., Boy E., Chen D., Candal P., Reddy M.B. Regular Consumption of a High-Phytate Diet Reduces the Inhibitory Effect of Phytate on Nonheme-Iron Absorption in Women with Suboptimal Iron Stores. J. Nutr. 2015;145:1735–1739. doi: 10.3945/jn.114.209957.10.3945/jn.114.20995726041677Bohn T., Davidsson L., Walczyk T., Hurrell R.F. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am. J. Clin. Nutr. 2004;79:418–423. doi: 10.1093/ajcn/79.3.418.10.1093/ajcn/79.3.41814985216Brune M., Rossander-Hultén L., Hallberg L., Gleerup A., Sandberg A.S. Iron absorption from bread in humans: Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 1992;122:442–449. doi: 10.1093/jn/122.3.442.10.1093/jn/122.3.4421311753Brune M., Rossander L., Hallberg L. Iron absorption: No intestinal adaptation to a high-phytate diet. Am. J. Clin. Nutr. 1989;49:542–545. doi: 10.1093/ajcn/49.3.542.10.1093/ajcn/49.3.5422538051Delimont N.M., Nickel S. Salivary cystatin SN is a factor predicting iron bioavailability after phytic acid rich meals in female participants. Int. J. Food Sci. Nutr. 2021;72:559–568. doi: 10.1080/09637486.2020.1846164.10.1080/09637486.2020.184616433179561Egli I., Davidsson L., Zeder C., Walczyk T., Hurrell R. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J. Nutr. 2004;134:1077–1080. doi: 10.1093/jn/134.5.1077.10.1093/jn/134.5.107715113948Fredlund K., Isaksson M., Rossander-Hulthén L., Almgren A., Sandberg A.S. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. J. Trace Elem. Med. Biol. 2006;20:49–57. doi: 10.1016/j.jtemb.2006.01.003.10.1016/j.jtemb.2006.01.00316632176Hambidge K.M., Miller L.V., Mazariegos M., Westcott J., Solomons N.W., Raboy V., Kemp J.F., Das A., Goco N., Hartwell T., et al. Upregulation of Zinc Absorption Matches Increases in Physiologic Requirements for Zinc in Women Consuming High- or Moderate-Phytate Diets during Late Pregnancy and Early Lactation. J. Nutr. 2017;147:1079–1085. doi: 10.3945/jn.116.245902.10.3945/jn.116.245902PMC544346528424260Hambidge K.M., Krebs N.F., Westcott J.L., Sian L., Miller L.V., Peterson K.L., Raboy V. Absorption of calcium from tortilla meals prepared from low-phytate maize. Am. J. Clin. Nutr. 2005;82:84–87. doi: 10.1093/ajcn/82.1.84.10.1093/ajcn/82.1.84PMC159268716002804Heaney R.P., Weaver C.M., Fitzsimmons M.L. Soybean phytate content: Effect on calcium absorption. Am. J. Clin. Nutr. 1991;53:745–747. doi: 10.1093/ajcn/53.3.745.10.1093/ajcn/53.3.7452000830Hoppe M., Ross A.B., Svelander C., Sandberg A.S., Hulthén L. Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: A 12-week, randomized, parallel-design intervention study. Eur. J. Nutr. 2019;58:853–864. doi: 10.1007/s00394-018-1722-1.10.1007/s00394-018-1722-1PMC643712429796932Hunt J.R., Beiseigel J.M. Dietary calcium does not exacerbate phytate inhibition of zinc absorption by women from conventional diets. Am. J. Clin. Nutr. 2009;89:839–843. doi: 10.3945/ajcn.2008.27175.10.3945/ajcn.2008.2717519176739Lind T., Lönnerdal B., Persson L.A., Stenlund H., Tennefors C., Hernell O. Effects of weaning cereals with different phytate contents on hemoglobin, iron stores, and serum zinc: A randomized intervention in infants from 6 to 12 mo of age. Am. J. Clin. Nutr. 2003;78:168–175. doi: 10.1093/ajcn/78.1.168.10.1093/ajcn/78.1.16812816787Mazariegos M., Hambidge K.M., Krebs N.F., Westcott J.E., Lei S., Grunwald G.K., Campos R., Barahona B., Raboy V., Solomons N.W. Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize. Am. J. Clin. Nutr. 2006;83:59–64. doi: 10.1093/ajcn/83.1.59.10.1093/ajcn/83.1.5916400050Petry N., Rohner F., Gahutu J.B., Campion B., Boy E., Tugirimana P.L., Zimmerman M.B., Zwahlen C., Wirth J.P., Moretti D. In Rwandese Women with Low Iron Status, Iron Absorption from Low-Phytic Acid Beans and Biofortified Beans Is Comparable, but Low-Phytic Acid Beans Cause Adverse Gastrointestinal Symptoms. J. Nutr. 2016;146:970–975. doi: 10.3945/jn.115.223693.10.3945/jn.115.22369327029940Petry N., Egli I., Campion B., Nielsen E., Hurrell R. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J. Nutr. 2013;143:1219–1224. doi: 10.3945/jn.113.175067.10.3945/jn.113.17506723784069Bokhari F., Derbyshire E., Li W., Brennan C.S., Stojceska V. A study to establish whether food-based approaches can improve serum iron levels in child-bearing aged women. J. Hum. Nutr. Diet. 2012;25:95–100. doi: 10.1111/j.1365-277X.2011.01185.x.10.1111/j.1365-277X.2011.01185.x21749488Davidsson L., Ziegler E.E., Kastenmayer P., van Dael P., Barclay D. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Br. J. Nutr. 2004;91:287–294. doi: 10.1079/BJN20031053.10.1079/BJN2003105314756915Davidsson L., Galan P., Cherouvrier F., Kastenmayer P., Juillerat M.A., Hercberg S., Hurrell R.F. Bioavailability in infants of iron from infant cereals: Effect of dephytinization. Am. J. Clin. Nutr. 1997;65:916–920. doi: 10.1093/ajcn/65.4.916.10.1093/ajcn/65.4.9169094872Davidsson L., Almgren A., Juillerat M.A., Hurrell R.F. Manganese absorption in humans: The effect of phytic acid and ascorbic acid in soy formula. Am. J. Clin. Nutr. 1995;62:984–987. doi: 10.1093/ajcn/62.5.984.10.1093/ajcn/62.5.9847572746Hurrell R.F., Reddy M.B., Juillerat M.A., Cook J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003;77:1213–1219. doi: 10.1093/ajcn/77.5.1213.10.1093/ajcn/77.5.121312716674Koréissi-Dembélé Y., Fanou-Fogny N., Moretti D., Schuth S., Dossa R.A., Egli I., Zimmermann M.B., Brouwer I.D. Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis) meals in West African women. PLoS ONE. 2013;8:e70613. doi: 10.1371/journal.pone.0070613.10.1371/journal.pone.0070613PMC379080024124445Zhang H., Onning G., Oste R., Gramatkovski E., Hulthén L. Improved iron bioavailability in an oat-based beverage: The combined effect of citric acid addition, dephytinization and iron supplementation. Eur. J. Nutr. 2007;46:95–102. doi: 10.1007/s00394-006-0637-4.10.1007/s00394-006-0637-417225920Manary M.J., Krebs N.F., Gibson R.S., Broadhead R.L., Hambidge K.M. Community-based dietary phytate reduction and its effect on iron status in Malawian children. Ann. Trop. Paediatr. 2002;22:133–136. doi: 10.1179/027249302125000850.10.1179/02724930212500085012070948Petry N., Egli I., Zeder C., Walczyk T., Hurrell R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 2010;140:1977–1982. doi: 10.3945/jn.110.125369.10.3945/jn.110.12536920861210Couzy F., Mansourian R., Labate A., Guinchard S., Montagne D.H., Dirren H. Effect of dietary phytic acid on zinc absorption in the healthy elderly, as assessed by serum concentration curve tests. Br. J. Nutr. 1998;80:177–182. doi: 10.1017/S0007114598001081.10.1017/S00071145980010819828759Davidsson L., Galan P., Kastenmayer P., Cherouvrier F., Juillerat M.A., Hercberg S., Hurrell R.F. Iron bioavailability studied in infants: The influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatr. Res. 1994;36:816–822. doi: 10.1203/00006450-199412000-00024.10.1203/00006450-199412000-000247898991Kim J., Paik H.Y., Joung H., Woodhouse L.R., Li S., King J.C. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J. Am. Coll. Nutr. 2007;26:1–9. doi: 10.1080/07315724.2007.10719579.10.1080/07315724.2007.1071957917353577Manary M.J., Hotz C., Krebs N.F., Gibson R.S., Westcott J.E., Arnold T., Broadhead R.L., Hambidge K.M. Dietary phytate reduction improves zinc absorption in Malawian children recovering from tuberculosis but not in well children. J. Nutr. 2000;130:2959–2964. doi: 10.1093/jn/130.12.2959.10.1093/jn/130.12.295911110854Petry N., Egli I., Gahutu J.B., Tugirimana P.L., Boy E., Hurrell R. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J. Nutr. 2014;144:1681–1687. doi: 10.3945/jn.114.192989.10.3945/jn.114.19298925332466Davies N.T., Warrington S. The phytic acid mineral, trace element, protein and moisture content of UK Asian immigrant foods. Hum. Nutr. Appl. Nutr. 1986;40:49–59.3957703Heath A.L., Roe M.A., Oyston S.L., Fairweather-Tait S.J. Meal-based intake assessment tool: Relative validity when determining dietary intake of Fe and Zn and selected absorption modifiers in UK men. Br. J. Nutr. 2005;93:403–416. doi: 10.1079/BJN20041324.10.1079/BJN2004132415877881Carnovale E., Lombardi-Boccia G., Lugaro E. Phytate and zinc content of Italian diets. Hum. Nutr. Appl. Nutr. 1987;41:180–186.3623985Khokhar S., Pushpanjali, Fenwick G.R. Phytate content of Indian foods and intakes by vegetarian Indians of Hisar Region, Haryana State. J. Agric. Food Chem. 1994;42:2440–2444. doi: 10.1021/jf00047a014.10.1021/jf00047a014Pallauf J., Pippig S., Most E., Rimbach G. Supplemental sodium phytate and microbial phytase influence iron availability in growing rats. J. Trace Elem. Med. Biol. 1999;13:134–140. doi: 10.1016/S0946-672X(99)80003-0.10.1016/S0946-672X(99)80003-010612076Stahl C.H., Han Y.M., Roneker K.R., House W.A., Lei X.G. Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J. Anim. Sci. 1999;77:2135–2142. doi: 10.2527/1999.7782135x.10.2527/1999.7782135x10461992Rimbach G., Walter A., Most E., Pallauf J. Effect of supplementary microbial phytase to a maize-soya diet on the availability of calcium, phosphorus, magnesium and zinc: In vitro dialysability in comparison with apparent absorption in growing rats. J. Anim. Physiol. Anim. Nutr. 1997;77:198–206. doi: 10.1111/j.1439-0396.1997.tb00755.x.10.1111/j.1439-0396.1997.tb00755.xRimbach G., Walter A., Most E., Pallauf J. Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food Chem. Toxicol. 1998;36:7–12. doi: 10.1016/S0278-6915(97)00117-8.10.1016/S0278-6915(97)00117-89487359Lei X., Ku P., Miller E., Yokoyama M. Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. J. Anim. Sci. 1993;71:3359–3367. doi: 10.2527/1993.71123359x.10.2527/1993.71123359x8294288Kies A.K., Gerrits W.J., Schrama J.W., Heetkamp M.J., van der Linden K.L., Zandstra T., Verstegen M.W. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 2005;135:1131–1138. doi: 10.1093/jn/135.5.1131.10.1093/jn/135.5.113115867293Rimbach G., Pallauf J., Brandt K., Most E. Effect of phytic acid and microbial phytase on Cd accumulation, Zn status, and apparent absorption of Ca, P, Mg, Fe, Zn, Cu, and Mn in growing rats. Ann. Nutr. Metab. 1995;39:361–370. doi: 10.1159/000177886.10.1159/0001778868678472Shelton J., LeMieux F., Southern L., Bidner T. Effect of microbial phytase addition with or without the trace mineral premix in nursery, growing, and finishing pig diets. J. Anim. Sci. 2005;83:376–385. doi: 10.2527/2005.832376x.10.2527/2005.832376x15644510Sharma J., Devanathan S., Sengupta A., Rajeshwari P. Assessing the prevalence of iron deficiency anemia and risk factors among children and women: A case study of rural Uttar Pradesh. Clin. Epidemiol. Glob. Health. 2024;26:101545. doi: 10.1016/j.cegh.2024.101545.10.1016/j.cegh.2024.101545Troesch B., Jing H., Laillou A., Fowler A. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food Nutr. Bull. 2013;34((Suppl. S1)):S90–S101. doi: 10.1177/15648265130342S111.10.1177/15648265130342S11124050000Fontaine O. Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr. Bull. 2007;28:S621.18297899Hanif N., Anwer F. Chronic Iron Deficiency. StatPearls Publishing; Treasure Island, FL, USA: 2020.32809711Prasad A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013;4:176–190. doi: 10.3945/an.112.003210.10.3945/an.112.003210PMC364909823493534Lambré C., Barat Baviera J.M., Bolognesi C., Cocconcelli P.S., Crebelli R., Gott D.M., Grob K., Lampi E., Mengelers M., Mortensen A., et al. Safety evaluation of the food enzyme 3-phytase from the genetically modified Aspergillus niger strain NPH. EFSA J. 2024;22:e8514.PMC1078486138222927Choudhuri S., DiNovi M., dos Santos L., Leblanc J., Meyland I., Mueller U. 3-Phytase from Aspergillus niger Expressed in Aspergillus niger First draft prepared by. Saf. Eval. Certain. Food Addit. 2012;19