Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects. We summarize current data on the relationship between autophagy and obesity, and discuss various dietary interventions as regulators of autophagy-related genes in the prevention and ultimate treatment of obesity in humans, as available in scientific databases and published through July 2024. Lifestyle modifications (such as calorie restriction, intermittent fasting, physical exercise), including following a diet rich in flavonoids, antioxidants, specific fatty acids, specific amino acids and others, have shown a beneficial role in the induction of this process. The activation of autophagy through various nutritional interventions tends to elicit a consistent response, characterized by the induction of certain kinases (including AMPK, IKK, JNK1, TAK1, ULK1, and VPS34) or the suppression of others (like mTORC1), the deacetylation of proteins, and the alleviation of inhibitory interactions between BECN1 and members of the Bcl-2 family. Significant health/translational properties of many nutrients (nutraceuticals) can affect chronic disease risk through various mechanisms that include the activation or inhibition of autophagy. The role of nutritional intervention in the regulation of autophagy in obesity and its comorbidities is not yet clear, especially in obese individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643440PMC
http://dx.doi.org/10.3390/nu16234003DOI Listing

Publication Analysis

Top Keywords

autophagy-related genes
8
dietary interventions
8
autophagy obesity
8
autophagy
5
relationship dietary
4
dietary nutrient
4
nutrient intake
4
intake autophagy-related
4
genes obese
4
obese humans
4

Similar Publications

KDM4A Silencing Reverses Cisplatin Resistance in Ovarian Cancer Cells by Reducing Mitophagy via SNCA Transcriptional Inactivation.

Curr Mol Med

January 2025

Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo City, Zhejiang Province, 315010, China.

Background: Ovarian cancer is one of the deadliest gynecologic cancers, with chemotherapy resistance as the greatest clinical challenge. Autophagy occurrence is associated with cisplatin (DDP)-resistant ovarian cancer cells. Herein, the role and mechanism of alpha-synuclein (SNCA), the autophagy-related gene, in DDP resistance of ovarian cancer cells are explored.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa.

View Article and Find Full Text PDF

ATG9 promotes autophagosome formation through interaction with LC3.

Biochem Biophys Res Commun

December 2024

Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China. Electronic address:

The autophagosome is a double-membrane organelle that executes macroautophagy. Previous studies have shown that the autophagosome formation is driven by autophagy-related genes, among which ATG9 is the only conserved transmembrane protein and has been shown to play a critical role in the autophagosome formation. However, how ATG9 binds to the growing autophagosome membrane has remained uncertain.

View Article and Find Full Text PDF

Background: Emerging research indicates that autophagy, a cellular degradation process, may be triggered by certain immune responses, including those by vaccines. This study aims to examine whether the SARS-CoV-2 vaccines, known to induce robust immune activation, can trigger autophagic pathways that facilitate the degradation of amyloid-beta (Aβ), a pathological feature of Alzheimer's disease (AD). By applying deep learning techniques to analyze complex immunological and neurological data, this study explores a potentially innovative therapeutic strategy for AD.

View Article and Find Full Text PDF

Correction to: Genome‑wide analysis of autophagy‑related genes (ATGs) in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt.

Plant Cell Rep

January 2025

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!