Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Materials consisting of quantum dots with a semiconductor-core, metal-shell structure often have exciting and tunable photo-electrical properties in a large range of values, and they are adjustable by core and shell structure parameters. Here, we investigated the influence of Mn-shell addition to Ge quantum dots formed in an alumina matrix by magnetron sputtering deposition. We show a well-achieved formation of the 3D regular lattices of Ge-core, Mn-rich shell quantum dots, which were achieved by self-assembled growth mode. Intermixing of Ge and Mn in the shell was observed. The optical, electrical, and photo-conversion properties were strongly affected by the addition of the Mn shell and its thickness. The shell induced changes in the optical gap of the materials and caused an increase in the material's conductivity. The most significant changes occurred in the photo-electrical properties of the materials. Their quantum efficiency, i.e., the efficiency of the conversion of photon energy to the electrical current, was very strongly enhanced by the shell addition, though it depended on its thickness. The best results were obtained for the thinnest shell added to the Ge core, for which the maximal quantum efficiency was significantly enhanced by more than 100%. The effect was, evidently, the consequence of multiple exciton generation, which was enhanced by the shell addition. The obtained materials offer great potential for various applications in photo-sensitive devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano14231906 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643595 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!