Silver nanoparticles (AgNPs), widely utilized nanomaterials, can negatively affect crop growth and development. However, it remains unclear whether crops exhibit similar responses to AgNPs stress at seed germination and seedling stages. In this study, rice seeds and seedlings were exposed to AgNPs, and their growth, photosynthetic efficiency, and antioxidant systems were recorded. demonstrated significant AgNPs accumulation in rice tissues, with notable higher accumulation in seedlings exposed to AgNPs after germination compared to AgNPs exposure during germination. The roots exhibited greater AgNPs accumulation than shoots across both stages. Exposure to AgNPs during the seed germination stage, even at concentrations up to 2 mg/L, did not significantly affect growth, physiological indices, or oxidative stress. In contrast, seedlings exposed to 1 and 2 mg/L AgNPs showed significant reductions in shoot length, biomass, nutrient content, and photosynthetic efficiency. At low AgNPs concentrations, the maximum relative electron transport rate (rETR) was significantly reduced, while the higher concentrations caused pronounced declines in the chlorophyll a fluorescence transient curves (OJIP) compared to the control group. Antioxidant enzyme activities increased in both leaves and roots in a dose-dependent manner, with roots exhibiting significantly higher activity, suggesting that roots are the primary site of AgNPs stress responses. In conclusion, rice responds differently to AgNPs exposure at distinct developmental stages, with the seedling stage being more susceptible to AgNPs-induced stress than the seed germination stage. These findings underscore the importance of considering growth stages when assessing the food safety and environmental risks associated with AgNPs exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644278 | PMC |
http://dx.doi.org/10.3390/plants13233454 | DOI Listing |
Langmuir
January 2025
Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.
The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an -terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Nanoscale
January 2025
Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) Chandigarh, 160036, India.
Herein, we provide insights into the size-dependent interactions of silver nanoparticles (AgNPs) with urease and their implications for enzyme inhibition. AgNPs with a size of 5 nm exhibited the strongest binding affinity of 66 nM, resulting in significant enzyme attachment, interfering enzyme conformation, and a consequent loss of activity. Mid-sized AgNPs, , 20 and 50 nm, exhibited binding affinities of 712 and 616 nM, causing only slight structural alterations.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic address:
The accurate detection of carbamate pesticides popularly employed in agricultural products is critical for reducing the threat of resultant residues to human health. In this work, a regenerable nanofilm used for SERS substrate was constructed by interfacially confined self-assembly incorporating CdS nanowires (CdSNWs) and Ag nanoparticles (AgNPs). The constructed AgNPs-CdSNWs/Nanofilm could significantly enhance the Raman signals of three carbamate pesticides (metolcarb, carbaryl and aldicarb-sulfone).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!