The mammalian target of rapamycin (mTOR), a serine/threonine kinase, promotes cell growth and inhibits autophagy. The following two complexes contain mTOR: mTORC1 with the regulatory associated protein of mTOR (RAPTOR) and mTORC2 with the rapamycin-insensitive companion of mTOR (RICTOR). The phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway is important in the intervertebral disk, which is the largest avascular, hypoxic, low-nutrient organ in the body. To examine gene-silencing therapeutic approaches targeting PI3K/Akt/mTOR signaling in degenerative disk cells, an in vitro comparative study was designed between small interfering RNA (siRNA)-mediated RNA interference (RNAi) and clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) gene editing. Surgically obtained human disk nucleus pulposus cells were transfected with a siRNA or CRISPR-Cas9 plasmid targeting , , or . Both of the approaches specifically suppressed target protein expression; however, the 24-h transfection efficiency differed by 53.8-60.3% for RNAi and 88.1-89.3% for CRISPR-Cas9 ( < 0.0001). Targeting , , and all induced autophagy and inhibited apoptosis, senescence, pyroptosis, and matrix catabolism, with the most prominent effects observed with CRISPR-Cas9. In the time-course analysis, the 168-h suppression ratio of RAPTOR protein expression was 83.2% by CRISPR-Cas9 but only 8.8% by RNAi. While RNAi facilitates transient gene knockdown, CRISPR-Cas9 provides extensive gene knockout. Our findings suggest that RAPTOR/mTORC1 is a potential therapeutic target for degenerative disk disease.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells13232030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640589PMC

Publication Analysis

Top Keywords

pi3k/akt/mtor signaling
12
gene-silencing therapeutic
8
therapeutic approaches
8
approaches targeting
8
targeting pi3k/akt/mtor
8
signaling degenerative
8
intervertebral disk
8
disk cells
8
cells vitro
8
vitro comparative
8

Similar Publications

Background: hucMSC-exosomes can be engineered to strengthen their therapeutic potential, and the present study aimed to explore whether hypoxic preconditioning can enhance the angiogenic potential of hucMSC-exosomes in an experimental model of POF.

Methods: Primary hucMSCs and ROMECs were isolated from fresh tissue samples and assessed through a series of experiments. Exosomes were isolated from hucMSCs under normoxic or hypoxic conditions (norm-Exos and hypo-Exos, respectively) and then characterized using classic experimental methods.

View Article and Find Full Text PDF

A patent review of small molecular inhibitors targeting EGFR exon 20 insertion (Ex20ins) (2019-present).

Expert Opin Ther Pat

December 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.

Introduction: Mutations in epidermal growth factor receptor (EGFR) kinase domain consistently activate downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MEK, thereby promoting tumor growth. Although the majority of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations are sensitive to existing EGFR tyrosine kinase inhibitors (EGFR-TKIs), there remains an unmet clinical need for effective therapies targeting EGFR Ex20ins mutations, making direct targeting EGFR Ex20ins mutations a promising therapeutic strategy.

Areas Covered: This review covers the progress of clinical studies targeting EGFR Ex20ins inhibitors and summarizes recent (1 January 2019 - 30 April 2024) patents disclosing EGFR Ex20ins inhibitors available in the Espacenet and CAS SciFinder databases.

View Article and Find Full Text PDF

Background: Our previous study demonstrated that temperature-related microwave ablation (MWA) can safely modulate growth plates of piglets' vertebrae. Therefore, this study is designed to investigate the effects of different temperatures on chondrocyte viability and the underlying molecular mechanisms in vitro.

Methods: Following a 10-minute treatment at different temperatures (37 °C, 40 °C, 42 °C, 44 °C, 46 °C, 48 °C, and 50 °C), CCK-8 assay was used to examine the viability of ATDC5 cells at 12 h.

View Article and Find Full Text PDF

Differential effects of EPA and DHA on aging-related sarcopenia in mice and possible mechanisms involved.

Food Funct

December 2024

Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.

Sarcopenia frequently occurs with aging and leads to major adverse impacts in elderly individuals. The protective effects of omega-3 polyunsaturated fatty acids against aging-related sarcopenia have been demonstrated; however, the effect and underlying mechanism of EPA or DHA alone remain inconclusive. Hence, the present study was aimed to clarify the differential effects and possible mechanisms of EPA and DHA on aging-related sarcopenia.

View Article and Find Full Text PDF

Metformin protects prepubertal mice ovarian reserve against cyclophosphamide via regulation of the PI3K/Akt/mTOR signaling pathway and Yap-1.

J Ovarian Res

December 2024

Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran.

Background: Cyclophosphamide is a widely utilized chemotherapeutic agent for pediatric cancers, known to elicit adverse effects, including perturbation of the PI3K/Akt/mTOR and Hippo signaling pathways, thereby diminishing ovarian reserve and fertility potential in females. Consequently, this investigation delves into the mitigative effects of metformin on cyclophosphamide-induced ovarian impairment in prepubertal mice.

Methods: Twenty-four 14-day-old NMRI female mice were distributed into four groups: Control (Cont), Cyclophosphamide (Cyc), Metformin (Met), and Metformin plus Cyclophosphamide (Met-Cyc).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!