Comparative Analysis of Different Extracellular Matrices for the Maintenance of Bovine Satellite Cells.

Animals (Basel)

Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea.

Published: December 2024

Cultured meat produced using satellite cells has emerged to address issues such as overpopulation, the ethical conundrums associated with the breeding environment, and the methane gas emissions associated with factory farming. To date, however, the challenges of maintaining satellite cells in vitro and reducing the costs of the culture media are still substantial. Gelatin, collagen, and fibronectin are commonly used extracellular matrices (ECMs) that facilitate signal integration with the cells and promote cell adhesion. In this study, we compared the proliferation, cell cycle, immunocytochemistry, and expression levels of , , , and genes in bovine satellite cells (BSCs) cultured on gelatin-, collagen- and fibronectin-coated dishes as part of short- and long-term cultures. We observed that BSCs cultured on gelatin-coated dishes showed higher levels of Pax7 expression than BSCs cultured on collagen- and fibronectin-coated dishes in both short- and long-term cultures, indicating that BSCs cultured on gelatin effectively maintained the satellite cell population in both the short- and long-term cultures. Our study highlights that gelatin is an effective ECM for the maintenance of BSCs and the production of cultured meat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640025PMC
http://dx.doi.org/10.3390/ani14233496DOI Listing

Publication Analysis

Top Keywords

satellite cells
16
bscs cultured
16
short- long-term
12
long-term cultures
12
extracellular matrices
8
bovine satellite
8
cultured meat
8
collagen- fibronectin-coated
8
fibronectin-coated dishes
8
dishes short-
8

Similar Publications

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells.

View Article and Find Full Text PDF

Protocol for the three-dimensional analysis of rodent skeletal muscle.

STAR Protoc

January 2025

Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:

Confocal imaging is a powerful tool capable of analyzing cellular spatial data within a given tissue. Here, we present a protocol for preparing optically cleared extensor digitorum longus (EDL) skeletal muscle samples suitable for confocal imaging/computational analysis. We describe steps for sample preparation (including perfusion fixation and tissue clearing of muscle samples), image acquisition, and computational analysis, with sample segmentation/3D rendering outlined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!