(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo mitosis after DNA replication. (2) Purpose: To furnish theoretical insights and data that support the process of cell reprogramming after nuclear transplantation. (3) Methods: We compared the nucleosome occupancy, distribution, and transcription of genes between two types of cells: fully grown GV oocytes from big follicles (BF) and somatic cells (porcine embryonic fibroblast, PEF). (4) Results: The nucleosome occupancy in the promoter of BF was 4.85%, which was significantly higher than that of 3.3% in PEF ( < 0.05), and the nucleosome distribution showed a noticeable increase surrounding transcriptional start sites (TSSs) in BF. Next, we reanalyzed the currently published transcriptome of fully grown GV oocytes and PEF, and a total of 51 genes in BF and 80 genes in PEF were identified as being uniquely expressed. The nucleosome distribution around gene TSSs correlated with expression levels in somatic cells, yet the results in BF differed from those in PEF. (5) Conclusion: This study uncovers the dynamic nature and significance of nucleosome positioning and chromatin organization across various cell types, providing a basis for nuclear transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ani14233392 | DOI Listing |
Cytotherapy
December 2024
Cancer Institute, University College London, London, UK. Electronic address:
The global changes from 2001 that elevated substantially modified cell therapies to the definition of "medicinal product" have been the catalyst for the dramatic expansion of the field to its current and future commercial success. Europe was the first to incorporate human somatic cells into drug legislation with the medicines directive of 2001 (2001/83/EC), which led to the development of the term "advanced therapy medicinal products" (ATMPs) to cover all substantially modified products, tissue-engineered products and somatic cells that are not substantially modified but that are used non-homologously. For convenience, I use the term "ATMPs" throughout this review.
View Article and Find Full Text PDFGenes Dev
December 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany.
Illegal wildlife trade is a growing problem internationally. Poaching of animals not only leads to the extinction of populations and species but also has serious consequences for ecosystems and economies. This study introduces a molecular marker system that authorities can use to detect and substantiate wildlife trafficking.
View Article and Find Full Text PDFBMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.
Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!