A new type of position-sensitive detectors is gaining attention in the neutron community. They are scintillator based detectors that detect the scintillation light on an individual photon basis via an image intensifier and a fast image sensor. Their readout operates in event mode i.e. it produces information about individual neutron interactions, reconstructed from the sensor data, thus enabling to achieve superior spatial and temporal resolutions compared to regular detectors. Although the development of current detectors is focused on neutrons, the concept is also applicable to the detection of other particles such as high-energy photons. This document provides a description on how these detectors are built, how they operate, and what their characteristics are. An example of a detector implementation based on a Timepix3 chip is described to illustrate the detector concept. This includes a detailed description of the algorithm that reconstructs the neutron interactions from the sensor data, one of the core components that sets it apart from established scintillator-based imaging detectors. Energy-resolved epithermal neutron radiography was performed at the ISIS EMMA beamline with this detector, illustrating some of the fundamental differences in the data that can be produced with the new type of detector compared to more established types of scintillator based neutron detectors. The term LumaCam is proposed to refer to this new class of position-sensitive event-mode detectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649928PMC
http://dx.doi.org/10.1038/s41598-024-82095-2DOI Listing

Publication Analysis

Top Keywords

detectors
9
class position-sensitive
8
event mode
8
scintillator based
8
neutron interactions
8
sensor data
8
neutron
5
lumacam novel
4
novel class
4
position-sensitive event
4

Similar Publications

Photon-Counting CT Effects on Sensitivity for Liver Lesion Detection: A Reader Study Using Virtual Imaging.

Radiology

January 2025

From the Department of Radiology, Duke University Hospital, 2301 Erwin Rd, Box 3808, Durham, NC 27701 (B.W.T., K.R.K., B.C.A., S.P.T., D.E.K., B.H., M.R.B., D.M., E.S., E.A.); Department of Biostatistics and Bioinformatics (N.F., S.M., A.E.) and Department of Medical Physics (W.P.S., E.S., E.A.), Duke University, Durham, NC.

Background Detection of hepatic metastases at CT is a daily task in radiology departments that influences medical and surgical treatment strategies for oncology patients. Purpose To compare simulated photon-counting CT (PCCT) with energy-integrating detector (EID) CT for the detection of small liver lesions. Materials and Methods In this reader study (July to December 2023), a virtual imaging framework was used with 50 anthropomorphic phantoms and 183 generated liver lesions (one to six lesions per phantom, 0.

View Article and Find Full Text PDF

This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.

View Article and Find Full Text PDF

A vibrational circular dichroism (VCD) instrument having a thermoelectrically cooled detector (denoted as a TEC unit) was constructed in this study. An electronic device, instead of liquid nitrogen, was employed in the instrument to cool the detector. The feasibility of the system was examined by recording the VCD spectra of liquid pinenes and insect wings.

View Article and Find Full Text PDF

In this study, a commercially available polypropylene homopolymer (H-PP) was blended with blow molding polyethylene (PE) grade via melt mixing using a compounding machine. The resulting blends were subjected to high-temperature size exclusion chromatography (SEC) analysis, coupled with infrared-5 (IR-5), viscometer (VISCO), and multi-angle laser light scattering (MALS) detectors. The molecular weight (MW) and MW distributions were investigated using SEC, and the exact blend compositions were evaluated using C nuclear magnetic resonance.

View Article and Find Full Text PDF

Ion exchange chromatography of biotherapeutics: Fundamental principles and advanced approaches.

J Chromatogr A

January 2025

School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland. Electronic address:

Ion exchange chromatography (IEX) is an important analytical technique for the characterization of biotechnology-derived products, such as monoclonal antibodies (mAbs) and more recently, cell and gene therapy products such as messenger ribonucleic acid (mRNA) and adeno-associated viruses (AAVs). This review paper first outlines the basic principles and separation mechanisms of IEX for charge variant separation of biotherapeutics, and examines the different elution modes based on salt or pH gradients. It then highlights several recent trends when applying IEX for the characterization of biotechnology-derived products, including: i) the effective use of pH gradients, ii) the improvement of selectivity by using organic solvents in the mobile phase, multi-step gradients, or by combining ion pairing and ion exchange, and iii) the increase in analytical throughput using ultra-short columns or automated screening of conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!