Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization. The mechanisms of mGluR6 trafficking and synaptic targeting remain poorly understood. In this study, we investigated mGluR6 missense mutations from patients with congenital stationary night blindness (CSNB), which is associated with loss of synaptic transmission to ON-BCs. We found that multiple CSNB mutations in the extracellular ligand-binding domain of mGluR6 impart a trafficking defect leading to lack of complex N-glycosylation but efficient plasma membrane insertion, suggesting a Golgi bypass mechanism. These mutants fail to bind ELFN1, consistent with lack of a necessary modification normally acquired in the Golgi. The same mutants were mislocalized in bipolar cells, explaining the loss of function in CSNB. The results reveal a key role of Golgi trafficking in mGluR6 function, and suggest a role of the extracellular domain in Golgi sorting.

Download full-text PDF

Source
http://dx.doi.org/10.26508/lsa.202403118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649943PMC

Publication Analysis

Top Keywords

mglur6
8
congenital stationary
8
stationary night
8
night blindness
8
synaptic transmission
8
defective glycosylation
4
glycosylation elfn1
4
elfn1 binding
4
binding mglur6
4
mglur6 congenital
4

Similar Publications

Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization.

View Article and Find Full Text PDF

At the first synapse in the vertebrate retina, rod photoreceptor terminals form deep invaginations occupied by multiple second-order rod bipolar and horizontal cell (RBP and HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. We investigated the impact of this complex architecture on the diffusion of synaptic glutamate and activity of postsynaptic receptors.

View Article and Find Full Text PDF

Differential Localization and Functional Roles of mGluR6 Paralogs in Zebrafish Retina.

Invest Ophthalmol Vis Sci

October 2024

University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

Purpose: To define the location of mglur6 paralogs in the outer zebrafish retina and delineate their contribution to retina light responses across the visual spectrum.

Methods: In situ hybridization and immunolocalization with custom-made antibodies were used to localize mglur6 transcripts, proteins, and additional components of the mGluR6 signaling complex. Gene editing was used to generate knockout mutants that were analyzed with white light and spectral electroretinography.

View Article and Find Full Text PDF
Article Synopsis
  • The current optogenetic approach risks damaging retinal cells because the light intensity needed is too high, but red-shifted lights are safer than blue lights.
  • Researchers created three new red-shifted variants of Opto-mGluR6 (ROM17, ROM18, ROM19) using bioinformatics, and tests confirmed that these variants effectively respond to the desired light wavelengths and can activate G-protein signaling safely.
View Article and Find Full Text PDF

Leber congenital amaurosis (LCA) is a sight-threatening inherited retinal disorder (IRD) caused by numerous genetic mutations. Multi-characteristic opsin (MCO)-based optogenetic therapy allows the recruitment of residual cells of the retina in LCA for alternative vision transduction while being mutation-agnostic. Using mice, we investigated the efficacy of an adeno-associated virus2 (AAV2)-transduced ambient light-activatable MCO (MCO-010) containing a metabotropic glutamate receptor-6 bipolar cell-specific promoter/enhancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!