[Recent advances in organ-system-specific biological age].

Zhonghua Liu Xing Bing Xue Za Zhi

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing100191, China Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing100191, China Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing100191, China.

Published: December 2024

Biological age (BA) is a marker to accurately assess aging, facilitating the prediction of age-related diseases and promoting healthy aging. In recent years, first- and second-generation organ-system-specific BA has been developed using chronological age (CA) or aging-related outcomes (mortality) as training phenotypes and data from questionnaires, physical examinations, clinical biochemistry, imaging, and multi-omics to investigate the specificity of organ systems aging. Here, we review the methodologies for constructing BA, current efforts to assess organ system-specific BA, and related genome-wide association studies (GWAS). Previous studies predominantly used the first-generation BA method, using CA as training phenotypes. Organ-system-specific BA can accurately predict the disease risk of corresponding organ systems. We propose the development of organ system-specific BA through second-generation BA models and conducting GWAS and Mendelian randomization studies to explore organ system-specific aging processes, which will provide a theoretical foundation for the clinical application of organ system-specific BA.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn112338-20240626-00379DOI Listing

Publication Analysis

Top Keywords

organ system-specific
16
training phenotypes
8
organ systems
8
organ
6
[recent advances
4
advances organ-system-specific
4
organ-system-specific biological
4
biological age]
4
age] biological
4
biological age
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!