Diabetic kidney disease (DKD) is a severe diabetic microvascular complication featured by chronic low-grade inflammation. Roux-en-Y gastric bypass (RYGB) surgery has gained importance as a safe and effective surgery to treat DKD. Bile acids are significantly changed after RYGB, which brings a series of metabolic benefits, but the relationship with the improvement of DKD is unclear. Therefore, this study performed RYGB surgery on db/db mice to observe the beneficial effects of the surgery on the kidneys, and performed bile acid targeted metabolomics analysis to explore bile acid changes. We found that RYGB significantly reduced albuminuria in db/db mice, improved renal function, reversed renal structural lesions, and attenuated podocyte injury, inflammation. Notably, bile acid metabolomic analysis revealed taurolithocholic acid (TLCA) as the most significantly altered bile acid after RYGB. Further in vitro and in vivo validation experiments revealed that TLCA supplementation improved renal function and reduced renal inflammatory damage in db/db mice. In addition, TLCA inhibited high glucose-induced inflammatory damage in MPC-5 cells, and its mechanism of action may be related to activating Takeda G protein-coupled receptor 5 (TGR5), inhibiting NF-κB phosphorylation, and thus inhibiting inflammatory response. In conclusion, RYGB may play a protective role in the kidneys of diabetic mice by activating the TLCA/TGR5 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00248.2024 | DOI Listing |
Diabet Med
December 2024
Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan.
Aims: Skin disorders occur more frequently with sodium-dependent glucose cotransporter type 2 (SGLT2) inhibitors than with other antidiabetic drugs. We conducted basic research using ipragliflozin, with the aim of identifying new measures to prevent skin disorders caused by SGLT2 inhibitors.
Methods: db/db type 2 diabetes model mice were orally administered ipragliflozin (10 mg/kg or 30 mg/kg) once a day for 28 days and skin function genes were analysed by real-time RT-PCR or Western blotting.
Cardiovasc Diabetol
December 2024
Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
In patients with type II diabetes, the development of diabetic cardiomyopathy (DC) is associated with a high risk of mortality. Left ventricular hypertrophy, diastolic dysfunction, and exercise intolerance are the first signs of DC. The underlying mechanisms are not fully elucidated, and there is an urgent need for specific biomarkers and molecular targets for early diagnosis and treatment.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
AntiCancer, Inc., San Diego, CA, USA.
Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells from mouse and human have been shown to differentiate into neurons, glia, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes in vitro. HAP stem cells have promoted the recovery of peripheral nerve and spinal cord injuries in mouse models by differentiating into glial fibrillary acidic protein (GFAP)-positive Schwann cells. HAP stem cells enclosed on polyvinylidene fluoride membranes (PFM) were transplanted into the severed thoracic spinal cord of nude mice.
View Article and Find Full Text PDFDiabetol Metab Syndr
December 2024
NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
Objectives: Among all the diabetes complications brought on by persistent inflammation is diabetic kidney disease (DKD). One essential method of the inflammatory response's programmed cell death is anthrax. One of the main causes of diabetic renal disease progression in a high-glycemic environment is the lysis of renal resident cells.
View Article and Find Full Text PDFDiabetol Metab Syndr
December 2024
Shanghai Innogen Pharmaceutical Co., Ltd, Shanghai, China.
Background: Glucagon-like peptide 1 (GLP-1) is an incretin hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic agent. We demonstrated previously that supaglutide, a novel long-acting GLP-1 analog, exerted hypoglycemic, hypolipidemic, and weight loss effects in type 2 diabetic db/db mice, DIO mice, and diabetic monkeys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!