AI Article Synopsis

  • Hepatocellular carcinoma (HCC) has a high incidence and mortality rate, with significant differences between its molecular subtypes, necessitating accurate classification for better treatment outcomes.
  • A study identified three distinct HCC subtypes using multi-omics data, with HS1 being the worst in terms of prognosis due to its immune-compromised nature.
  • The research developed a robust machine learning-guided prognostic signature (MLPS) and highlighted SLC2A1 as a key gene linked to tumor progression and treatment response, suggesting its potential for personalized therapies in HCC.

Article Abstract

Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse clustering algorithms to identify three HCC subtypes (HSs) with distinct prognostic characteristics. Among these, HS1 emerged as an immune-compromised subtype associated with the poorest prognosis. Additionally, we developed a novel, robust, and highly accurate machine learning-guided prognostic signature (MLPS) by integrating multiple machine learning algorithms and their combinations. Our study also identified SLC2A1, the core gene of MLPS, as being highly expressed during advanced stages of tumor progression. Knockdown experiments demonstrated that reducing SLC2A1 expression significantly suppressed the malignant behavior of HCC cells. Furthermore, SLC2A1 expression was linked to responsiveness to dasatinib and vincristine, suggesting potential therapeutic relevance. MLPS and SLC2A1 offer promising tools for individualized prognosis prediction and targeted therapy in HCC, providing new opportunities to improve patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.149178DOI Listing

Publication Analysis

Top Keywords

machine learning
8
slc2a1 prognostic
8
prognostic factor
8
hepatocellular carcinoma
8
slc2a1 expression
8
slc2a1
6
hcc
6
learning multi-omics
4
multi-omics characterization
4
characterization slc2a1
4

Similar Publications

Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.

View Article and Find Full Text PDF

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!