Integrating hydrothermal carbonization and chemical leaching to recover biogenic carbon from sewage sludge.

J Environ Manage

Université Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), F-38000, Grenoble, France. Electronic address:

Published: December 2024

With more than 10 million dry tons annually produced in the EU and a carbon content of approximately 30% db, sewage sludge (SS) can be a strategic source of biogenic carbon. However, the high moisture content and large amount of ash are strong barriers to sustainable valorisation. This study aims to assess the potential of hydrothermal carbonisation (HTC) as a sustainable alternative to sludge drying. Furthermore, it aims to test the integration of HTC and chemical leaching to convert sewage sludge into a leached hydrochar (LHC) useable as an alternative to fossil coal in steelmaking, and to extract inorganic compounds. Seven HTC tests were conducted at temperatures ranging from 180 to 270 °C and a residence time of 20 and 120 min. Hydrochar was chemically leached with HNO at 70 °C for 1 h. On average, a solid mass yield of 62% was obtained by the HTC tests; the residence time didn't significantly affect the process performance and the hydrochar composition. In all tests, a significant portion of sludge carbon (between 25% and 38.5%) was found as TOC in the aqueous phase. After leaching, the ash content in the LHC was reduced by half. Extraction efficiencies of >95% for P and Ca and >80% for Fe were achieved. The LHC was more stable than raw hydrochar when subjected to gasification with CO above 800 °C. Moreover, LHC showed potential as reducing agent in blast furnaces, with an average replacement ratio of 40%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123516DOI Listing

Publication Analysis

Top Keywords

sewage sludge
12
chemical leaching
8
biogenic carbon
8
htc tests
8
residence time
8
sludge
5
integrating hydrothermal
4
hydrothermal carbonization
4
carbonization chemical
4
leaching recover
4

Similar Publications

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

In October and December 2024, circulating vaccine-derived poliovirus type 2 (cVDPV2) was detected from two wastewater samples in Poland during routine environmental surveillance. The first isolate was characterised and matched previous cVDPV2 isolates detected in Spain in September, as well as in Germany, Finland, and the United Kingdom in November and December 2024. In response to the event, active surveillance for acute flaccid paralysis (AFP) has been strengthened, and the frequency of environmental sample collection has been increased.

View Article and Find Full Text PDF

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.

View Article and Find Full Text PDF

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!