Heparinase (EC 4.2.2.7) isolated from Flavobacterium heparinum was purified to homogeneity by a combination of hydroxylapatite chromatography, repeated gel filtration chromatography, and chromatofocusing. Homogeneity was established by the presence of a single band on both sodium dodecyl sulfate and acid-urea gel electrophoretic systems. Amino acid analysis shows that the enzyme contains relatively high amounts of lysine residues (9%) consistent with its cationic nature (pI 8.5) but contains only 4 cysteine residues/polypeptide. The molecular weight of heparinase was estimated to be 42,900 +/- 1,000 daltons by gel filtration and 42,700 +/- 1,200 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is very specific, acting only on heparin and heparan monosulfate out of 12 similar polysaccharide substrates tested. It has an activity maximum at pH 6.5 and 0.1 M NaCl and a stability maximum at pH 7.0 and 0.15 M NaCl. The Arrhenius activation energy was found to be 6.3 kcal/mol. However, the enzyme is very sensitive to thermal denaturation and loses activity very rapidly at temperatures over 40 degrees C. Kinetic studies of the heparinase reaction at 37 degrees C gave a Km of 8.04 X 10(-6) M and a Vm of 9.85 X 10(-5) M/min at a protein concentration of 0.5 microgram/ml. By adapting batch procedures of hydroxylapatite and QAE (quaternary aminoethyl)-Sephadex chromatography, gram quantities of heparinase that is nearly free of catalytic enzyme contaminants can be purified in 4-5 h.
Download full-text PDF |
Source |
---|
Carbohydr Res
October 2024
Centre de Recherche sur Les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de La Chimie, BP 53X, 38041, Grenoble, Cedex 09, France. Electronic address:
We designed metabolically engineered non-pathogenic strains of Escherichia coli to produce unsulfated chondroitin with and without chondroitin lyase to produce the chondroitin polymer or its related oligosaccharides. Chondroitin was synthesized using chondroitin synthase KfoC and chondroitin was degraded using Pl35, a chondroitin lyase from Pedobacter heparinus. Pl35 behaved as a true endo-enzyme generating a large panel of oligosaccharides ranging from trimers to 18-mers instead of the di- and tetramers obtained with most chondroitin lyases.
View Article and Find Full Text PDFBiotechnol Appl Biochem
July 2024
MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.
Heparinases, including heparinases I-III (HepI, HepII, and HepIII, respectively), are important tools for producing low-molecular-weight heparin, an improved anticoagulant. The poor thermostability of heparinases significantly hinders their industrial and laboratory applications. To improve the thermostability of heparinases, we applied a rigid linker (EAAAK) (R) and a flexible linker (GGGGS) (F) to fuse maltose-binding protein (MBP) and HepI, HepII, and HepIII from Pedobacter heparinus, replacing the original linker from the plasmid pMAL-c2X.
View Article and Find Full Text PDFEssays Biochem
April 2023
Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K.
Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context.
View Article and Find Full Text PDFDNA Repair (Amst)
November 2022
Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA. Electronic address:
5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
July 2022
China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
A rod-shaped, Gram-stain-negative, non-motile and aerobic bacterium, designated Q8-18, was isolated from soil of glacier foreland in Austre Lovénbreen, Arctic, and subjected to a polyphasic taxonomic study. Strain Q8-18 grew optimally at 20 °C, pH 5.0-8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!