A tale of two endothelins: the rise and fall of the corpus luteum.

Reprod Fertil Dev

Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.

Published: December 2024

Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD24158DOI Listing

Publication Analysis

Top Keywords

corpus luteum
8
endothelin-1 endothelin-2
8
tale endothelins
4
endothelins rise
4
rise fall
4
fall corpus
4
luteum endothelins
4
endothelins small
4
small amino
4
amino acid
4

Similar Publications

The Influence of Ovarian-Derived Extracellular Vesicles in Reproduction.

Adv Anat Embryol Cell Biol

January 2025

Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.

In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.

View Article and Find Full Text PDF

Ovaries are of paramount importance in reproduction as they produce female gametes through a complex developmental process known as folliculogenesis. In the prospect of better understanding the mechanisms of folliculogenesis and of developing novel pharmacological approaches to control it, it is important to accurately and quantitatively assess the later stages of ovarian folliculogenesis (i.e.

View Article and Find Full Text PDF

Background: Senility influences fertility in women and companion animals, especially horses.

Aim: This study aimed to investigate the effect of aging in horses on the daily changes in the dominant follicle (DF) dynamics and hemodynamics, antimüllerian hormone (AMH), enzymes, antioxidants, and ovarian hormones during the estrous cycle.

Methods: Ovaries of old mares ( = 5, age >20 years) and young native mares ( = 6, age <10 years) were scanned during 6 different estrous cycles from March 2022 to August 2023 with Doppler ultrasound.

View Article and Find Full Text PDF

Background: Reproductive efficiency is paramount in the dairy industry, where early pregnancy detection of dairy cows will allow to detect the non-pregnant animals early, thus enabling to re-synchronize them and getting them pregnant leading to decrease in calving interval, which, in turn, is critical for maximizing productivity and economic gain. The objective of this study was to evaluate the colour Doppler ultrasonography (CDUS) and peripheral blood leukocytes (PBLs)-based pregnancy-associated biomarker mRNAs expression for the earliest detection of pregnancy status in the dairy cows at post insemination. Intensively managed animals were ovulation synchronized and subjected to timed artificial insemination (TAI).

View Article and Find Full Text PDF

The study aimed to establish a long-term 3D cell culture model using luteinized follicular cells to investigate the functionality and life cycle of the CL in felids. A mixture of cell types from antral follicles was luteinized in vitro and cultured for up to 23 days. The method, initially applied to the domestic cat, was later extended to Persian and Clouded leopards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!