Shabout is a fish with high nutritional value and economic potential. This fish is exposed to environmental factors due to the metal toxicity in its habitat and, consequently, its diet. The main purpose of this study was to determine how the detoxification mechanism of shabout is affected by examining the interaction of glutathione s-transferase enzyme with heavy metals. In our study, elemental analysis was first performed with the ICP-OES on water samples taken from three different points to detect metal toxicity in the habitat of the shabout. Then, the GST enzyme from the liver tissue of the shabout was purified for the first time by our team using the glutathione agarose affinity chromatography technique. Finally, the inhibition effects of nitrate salts of some metal ions on the purified enzyme activity were investigated under in vitro conditions. It was determined that the water courses where the fish were sampled in our study were alarming in terms of heavy metal content. While shabout liver showed Fe activation effect on GST enzyme under in vitro conditions, metal ions Na, Zn, Co, Cu and Pb showed inhibition effects. The detected inhibition concentration range showed that the enzyme is quite resistant to the metal salts whose effects were examined. It was concluded that in the consumption of shabout, emphasized to be a nutritious fish, the heavy metal levels of the region where the fish is caught should be taken into account and catching should be made in water resources inspected by relevant experts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-024-01424-4DOI Listing

Publication Analysis

Top Keywords

metal ions
12
vitro conditions
12
glutathione s-transferase
8
s-transferase enzyme
8
enzyme liver
8
liver tissue
8
tissue shabout
8
metal
8
metal toxicity
8
toxicity habitat
8

Similar Publications

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

Metal-Organic Frameworks (MOFs) gaining increasing interest in heterogeneous catalysis owing to their advantageous properties such as superior porosity, high surface area, ample catalytic sites. Their properties can be tailored by varying the metal ions or metal clusters (nodes) and organic linkers. Magnetically active nano core-shell MOF composites are also discovered for easy separation and reuse of catalyst.

View Article and Find Full Text PDF

In this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.

View Article and Find Full Text PDF

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!