The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-024-03257-y | DOI Listing |
Biophys J
January 2025
Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:
Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.
Transitioning to a power system heavily reliant on renewable wind energy involves more than just replacing conventional fossil-fuel-based power plant with wind farms, the wind energy must be able to meet the requirement of voltage establishment and power balance. It is believed that the self synchronized voltage source control of DFIG wind turbine generator is one of the possible solutions to realize virtual inertia and is helpful to increase the frequency stability of power system, thus is meaningful in the transformation of the power system dominated by renewable energy. Plenty of research has been conducted on the self synchronized voltage source control strategy in steady state, but few research is focused on the soft grid integration, which is a complicated process involving wind turbine control and power converter control.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai, 200000, China.
This study investigates the vulnerability of expansive soil slopes to destabilization and damage, particularly under intense rainfall, due to their heightened sensitivity to moisture. Focusing on a project in Yunnan Province, numerical simulation software is employed to address slope stability challenges. Meanwhile, the soil mechanical parameters of this study were acquired through experimentation.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.
View Article and Find Full Text PDFJ Orthop Sci
January 2025
Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China. Electronic address:
Purpose: A finite element analysis was performed to simulate the biomechanical differences between anterior-posterior (AP) direction and posterior-anterior (PA) direction placement of two cannulated screws in Hoffa fractures.
Methods: Computed tomography images of an healthy male volunteer were used to simulate Letenneur Ⅰ, Ⅱa, Ⅱb, Ⅱc, Ⅲ Hoffa fractures, and two groups of screw internal fixation models were constructed. Two 6.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!