Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The featured article by Sakurai and Tomonaga (2024) in this issue has set out to test to what extent dolphins can estimate relative differences between pairs of object numbers by echolocation. For this they used three consecutive experiments with multiple controls and compared their data statistically to existing data from visual experiments done on other species. Previous studies already indicate that dolphins can visually estimate relative numerosity (e.g., Jaakkola et al., 2005; Yaman et al., 2012). Therefore, the goal of the present study was to investigate the dolphin's capacity to apply Weber's law (quantity judgments are more accurate proportional to the quantities investigated) to two sets of object quantities under sonar evaluation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/com0000403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!