Electrochemiluminescence (ECL) of the conventional system of [Ru(bpy)] luminophore and amine-based coreactants is particularly inefficient on noble metal electrodes. This is due to the formation of a passivating oxide layer on the metal surface inhibiting the electro-oxidation of amines like tri-n-propylamine (TPrA) coreactant. Herein, we demonstrated the enhancement of ECL emission on gold surface by hydroxyl radicals attack that are chemically generated with Cu-Fenton reagent. These radicals selectively deactivate the gold active sites and knockout the metal surface asperities that counterintuitively led to an amplification of the ECL emission. Atomic force microscopy shows a massive smoothening of the surface. The electrochemical characterization proves that the involved ECL reaction mechanism switches from direct oxidation to catalytic route, where the kinetics of indirect TPrA oxidation is facilitated on deactivated gold surface. Besides, in situ smoothening of a rough electrode in presence of tandem [Ru(bpy)]/TPrA enables Cu sensing with good reliability and limit of detection. Such atomically smoothened and corrosion-resistant gold surface readily tuned the ECL reactivity and opened new directions on influence of topography and reactivity on ECL mechanisms, thus will be extremely useful for the future development of ECL imaging strategies and highly sensitive ECL sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202421185 | DOI Listing |
Anal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.
View Article and Find Full Text PDFCureus
December 2024
Department of Periodontology and Implantology, Government Dental College and Hospital, Jamnagar, Jamnagar, IND.
Introduction In their routine practice, dentists frequently encounter dentinal hypersensitivity, which is caused by the pulpal nerves' increased excitability due to fluid movement in the dentinal tubules. It is treated in-office using dentin desensitizers, which reduce hypersensitivity by obstructing the open tubules or desensitizing the free nerve endings present within the tubules. However, no substance or treatment plan has ever been proven to be the gold standard for the efficient treatment of dentinal hypersensitivity.
View Article and Find Full Text PDFClin Case Rep
January 2025
Cardiology Unit, Department of Internal Medicine College of Health Sciences, Addis Ababa University Addis Ababa Ethiopia.
Myocardial bridging is a common coronary anomaly. Although it is considered to be a benign condition, it can rarely be complicated by myocardial infarction. Clinicians should be suspicious of myocardial bridging as an etiology of myocardial infarction when other more common etiologies have been excluded.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFACS Mater Au
January 2025
Faculty of Chemistry, University of Warsaw, 1 Ludwika Pasteura Str., PL 02-093 Warsaw, Poland.
In this study, we demonstrate the formation of a self-assembled microgel double layer on an electrode surface, utilizing the ability to form electro-responsive, reversible inclusion complexes between microgels modified with ferrocene and β-cyclodextrin in these systems. The bottom layer was based on microgels containing ferrocene moieties and derivatives of cysteine. The presence of the amino acid derivative enabled the formation of the well-packed monolayer on the gold surface through chemisorption, while ferrocene was responsible for electroactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!