Optical coherence tomography (OCT) is a technique that performs high-resolution, three-dimensional, imaging of semi-transparent scattering biological tissues. Models of OCT image formation are needed for applications such as aiding image interpretation and validating OCT signal processing techniques. Existing image formation models generally trade off between model realism and computation time. In particular, the most realistic models tend to be highly computationally demanding, which becomes a limiting factor when simulating C-scan generation. Here we present an OCT image formation model based on the first-order Born approximation that is significantly faster than existing models, whilst maintaining a high degree of realism. This model is made more powerful because it is amenable to simulation of phase sensitive OCT, thus making it applicable to scenarios where sample displacement is of interest, such as optical coherence elastography (OCE) or Doppler OCT. The low computational cost of the model also makes it suitable for creating large OCT data sets needed for training deep learning OCT signal processing models. We present details of our novel image formation model and demonstrate its accuracy and computational efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640576 | PMC |
http://dx.doi.org/10.1364/BOE.534263 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!