T cell receptor signaling must operate reliably under tight time constraints. While assuming quite different mechanisms, two prominent models of T cell receptor activation, kinetic segregation and kinetic proofreading, both introduce a distinct time scale. However, a clear understanding of whether and how those characteristic times give rise to a consistent timing of T cell receptor activation in the presence of stochastic fluctuations has been lacking so far. Here, using a simulation approach capable of modeling molecular interactions between adjacent cell membranes, we explore a stochastic model that combines elements of kinetic segregation and proofreading. Our simulations suggest that the two mechanisms interoperate, thereby rendering the corresponding stochastic times biologically functional. Receptor activation relies on rare molecular events that are not well characterized by the mean of the underlying probability density function. Yet, a consistent timing of receptor activation can be ensured by a modest number of proofreading steps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643218 | PMC |
ACS Chem Neurosci
January 2025
Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.
Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T (CAR T) celltherapies and protein replacement. mRNAis large, charged, and easily degraded by nucleases.
View Article and Find Full Text PDFSmall
January 2025
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!