An inconvenient impact: Unveiling the overlooked differences in crystalline forms of iron (hydro)oxides on anaerobic digestion.

Water Res X

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.

Published: January 2025

Iron (hydro)oxides are commonly used to enhance anaerobic digestion due to their cost-effectiveness and versatility. However, the influence of crystalline structure on digestion performance is often overlooked despite their unique characteristics. In this study, we investigated how different crystalline forms of FeOOH affect substrate utilization, sludge activity, and the microbiomes in up-flow anaerobic sludge blanket (UASB) reactors. The crystalline structure of FeOOH impacted reactor performance, with γ-FeOOH, β-FeOOH, and α-FeOOH showing decreasing effectiveness, as reflected in chemical oxygen demand (COD) removal efficiencies of 99.0 %, 98.3 % and 97.1 %, respectively. FeOOH crystals influenced the secretion of extracellular polymeric substances (EPS) and sludge activity by releasing Fe ions at varying rates, leading to Fe accumulation in EPS in the order of β-FeOOH > γ-FeOOH > α-FeOOH. Additionally, γ-FeOOH supported the most stable microbial community structure, as indicated by the highest Alpha diversity index. This stability was associated with increased levels of and , along with the highest coenzyme F activity, which was approximately twice as high as in other groups. These findings underscore the crucial role of the crystalline structure of iron oxides in enhancing anaerobic digestion, emphasizing that biocompatibility should be a priority when optimizing digestion performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638638PMC
http://dx.doi.org/10.1016/j.wroa.2024.100286DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
12
crystalline structure
12
crystalline forms
8
iron hydrooxides
8
digestion performance
8
sludge activity
8
crystalline
5
digestion
5
inconvenient impact
4
impact unveiling
4

Similar Publications

Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.

Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.

View Article and Find Full Text PDF

Insight into the evolution of phosphorous conversion, microbial community and functional gene expression during anaerobic co-digestion of food waste and excess sludge with spicy substances exposure.

Chemosphere

January 2025

Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China. Electronic address:

Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed.

View Article and Find Full Text PDF

Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.

View Article and Find Full Text PDF

Evaluation of intestinal biopsy tissue preservation methods to facilitate large-scale mucosal microbiota research.

EBioMedicine

December 2024

Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Gastroenterology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom. Electronic address:

Background: Large-scale multicentre studies are needed to understand complex relationships between the gut microbiota, health and disease. Interrogating the mucosal microbiota may identify important biology not captured by stool analysis. Gold standard tissue cryopreservation ('flash freezing') limits large-scale study feasibility.

View Article and Find Full Text PDF

Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies.

Biotechnol Adv

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!