Exposure to external environmental stimuli can lead to skin aging, pigmentation, hair loss, and various immune-mediated as well as connective tissue diseases. Although conventional treatments are routinely used and favoured, they fail to achieve an adequate balance between clinical and cosmetic outcomes. Exosomes are vesicles with a lipid bilayer released by several cell types. These bioactive vesicles play a crucial role in intercellular communication and in several other physiological and pathological processes. They serve as vehicles for bioactive substances including lipids, nucleic acids, and proteins, making them appealing as cell-free treatments. According to studies, exosomes play a vital role in preventing scarring, and senescence, and promoting wound healing. Moreover, research on the biology of exosomes is growing, which has enabled the creation of specific guidelines and quality control methodologies to support their potential implementation in the future. In this review, we have mainly focused on the role of exosomes in various dermatological diseases, their clinical applications, and the potential for further research pertaining to this.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642453 | PMC |
http://dx.doi.org/10.4103/ijd.ijd_491_23 | DOI Listing |
Metabolites
December 2024
Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China.
Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.
Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.
J Pers Med
November 2024
Coriell Life Sciences, Philadelphia, PA 19112, USA.
Pharmacogenomics (PGx) has revolutionized personalized medicine by empowering the tailoring of drug treatments based on individual genetic profiles. However, the complexity of drug response mechanisms necessitates the integration of additional biological and environmental factors. This article explores integrating epigenetics, nutrigenomics, microbiomes, protein interactions, exosomes, and metabolomics with PGx to enhance personalized medicine.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico.
Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.
View Article and Find Full Text PDFGels
November 2024
Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!