Red blood cells (RBCs) play a role in the regulation of vascular tone via release of adenosine triphosphate (ATP) into the vasculature in response to various stimuli. Interestingly, ApoE/LDLR double-deficient (ApoE/LDLR) mice, a murine model of atherosclerosis, display a higher exercise capacity compared to the age-matched controls. However, it is not known whether increased exercise capacity in ApoE/LDLR mice is linked to the altered ATP release from RBCs. In this work, we characterized the ATP release feature of RBCs from ApoE/LDLR mice by exposing them to various stimuli . The results are linked to the previously reported mechanical and biochemical alterations in RBCs. 3V-induced ATP release from RBCs was at comparable levels for all groups, which indicated that the activity of adenylyl cyclase and the components of upstream signal-transduction pathway were intact. Moreover, hypoxia- and low pH-induced ATP release from RBCs was higher in ApoE/LDLR mice compared to their age-matched controls, a potential contributing factor and a finding in line with the higher exercise capacity. Taken together, augmented hypoxia-induced ATP release from RBCs in ApoE/LDLR mice indicates a possible deterioration in the ATP release pathway. This supports our previous reports on the role of the protein structure alterations of RBC cytosol in hypoxia-induced ATP release from RBCs in ApoE/LDLR mice. Thus, we emphasize that the presented herein results are the first step to future pharmacological modification of pathologically impaired microcirculation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638198PMC
http://dx.doi.org/10.3389/fphys.2024.1497346DOI Listing

Publication Analysis

Top Keywords

atp release
32
apoe/ldlr mice
24
release rbcs
20
exercise capacity
12
rbcs apoe/ldlr
12
atp
9
release
9
rbcs
8
higher exercise
8
compared age-matched
8

Similar Publications

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes.

View Article and Find Full Text PDF

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.

View Article and Find Full Text PDF

A creatine efflux transporter in oligodendrocytes.

FEBS J

January 2025

Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.

Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!