Brain-computer interfaces (BCIs) establish a direct communication pathway between the brain and external devices and have been widely applied in upper limb rehabilitation for hemiplegic patients. However, significant individual variability in motor imagery electroencephalogram (MI-EEG) signals leads to poor generalization performance of MI-based BCI decoding methods to new patients. This paper proposes a Multi-scale Frequency domain Feature-based Dynamic graph Attention Network (MFF-DANet) for upper limb MI decoding in hemiplegic patients. MFF-DANet employs convolutional kernels of various scales to extract feature information across multiple frequency bands, followed by a channel attention-based average pooling operation to retain the most critical frequency domain features. Additionally, MFF-DANet integrates a graph attention convolutional network to capture spatial topological features across different electrode channels, utilizing electrode positions as prior knowledge to construct and update the graph adjacency matrix. We validated the performance of MFF-DANet on the public PhysioNet dataset, achieving optimal decoding accuracies of 61.6% for within-subject case and 52.7% for cross-subject case. t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the features demonstrates the effectiveness of each designed module, and visualization of the adjacency matrix indicates that the extracted spatial topological features have physiological interpretability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638167PMC
http://dx.doi.org/10.3389/fnins.2024.1493264DOI Listing

Publication Analysis

Top Keywords

graph attention
12
frequency domain
12
hemiplegic patients
12
dynamic graph
8
attention network
8
multi-scale frequency
8
domain features
8
decoding hemiplegic
8
upper limb
8
spatial topological
8

Similar Publications

Advancements in spatial transcriptomics (ST) technology have enabled the analysis of gene expression while preserving cellular spatial information, greatly enhancing our understanding of cellular interactions within tissues. Accurate identification of spatial domains is crucial for comprehending tissue organization. However, the effective integration of spatial location and gene expression still faces significant challenges.

View Article and Find Full Text PDF

CMFX: Cross-modal fusion network for RGB-X crowd counting.

Neural Netw

December 2024

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:

Currently, for obtaining more accurate counts, existing methods primarily utilize RGB images combined with features of complementary modality (X-modality) for counting. However, designing a model that can adapt to various sensors is still an unsolved issue due to the differences in features between different modalities. Therefore, this paper proposes a unified fusion framework called CMFX for RGB-X crowd counting.

View Article and Find Full Text PDF

Brain networks and intelligence: A graph neural network based approach to resting state fMRI data.

Med Image Anal

December 2024

Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science (TreNDS), USA; Department of Computer Science, Georgia State University, Atlanta, USA.

Resting-state functional magnetic resonance imaging (rsfMRI) is a powerful tool for investigating the relationship between brain function and cognitive processes as it allows for the functional organization of the brain to be captured without relying on a specific task or stimuli. In this paper, we present a novel modeling architecture called BrainRGIN for predicting intelligence (fluid, crystallized and total intelligence) using graph neural networks on rsfMRI derived static functional network connectivity matrices. Extending from the existing graph convolution networks, our approach incorporates a clustering-based embedding and graph isomorphism network in the graph convolutional layer to reflect the nature of the brain sub-network organization and efficient network expression, in combination with TopK pooling and attention-based readout functions.

View Article and Find Full Text PDF

SurgiTrack: Fine-grained multi-class multi-tool tracking in surgical videos.

Med Image Anal

December 2024

University of Strasbourg, CAMMA, ICube, CNRS, INSERM, France; IHU Strasbourg, Strasbourg, France.

Accurate tool tracking is essential for the success of computer-assisted intervention. Previous efforts often modeled tool trajectories rigidly, overlooking the dynamic nature of surgical procedures, especially tracking scenarios like out-of-body and out-of-camera views. Addressing this limitation, the new CholecTrack20 dataset provides detailed labels that account for multiple tool trajectories in three perspectives: (1) intraoperative, (2) intracorporeal, and (3) visibility, representing the different types of temporal duration of tool tracks.

View Article and Find Full Text PDF

Interface-aware molecular generative framework for protein-protein interaction modulators.

J Cheminform

December 2024

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China.

Protein-protein interactions (PPIs) play a crucial role in numerous biochemical and biological processes. Although several structure-based molecular generative models have been developed, PPI interfaces and compounds targeting PPIs exhibit distinct physicochemical properties compared to traditional binding pockets and small-molecule drugs. As a result, generating compounds that effectively target PPIs, particularly by considering PPI complexes or interface hotspot residues, remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!