In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable. Yet, in the context of automation and the associated gain in measurement time, cost-effective and precise rotation stages designed for the use of optics are lacking. We present a low-cost alternative of a motorized high precision rotation stage system. The design is based on a combination of 3D-printed components, which form the monolithic mechanical framework, and a stepper motor controlled by an ESP32 based microcontroller. By coupling the motor and rotation unit via a toothed belt, backlash is minimized and at the same time high positioning accuracy can be achieved. Finally, the implementation of remote procedure calls for serial communication and the utilization of a physical home switch and incremental encoder complete the desired feature set of an integrated system for laboratory setups. The total costs can thus be reduced to less than 100€ without significantly restricting the performance criteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639585PMC
http://dx.doi.org/10.1016/j.ohx.2024.e00577DOI Listing

Publication Analysis

Top Keywords

rotation stages
12
rotation stage
8
stage system
8
rotation
6
open photonics
4
photonics integrated
4
integrated approach
4
approach building
4
building 3d-printed
4
3d-printed motorized
4

Similar Publications

Purpose: Improve the accuracy of one-stage object detection by modifying the YOLOv7 with Convolutional Block Attention Module (CBAM), known as YOLOv7-CBAM, which can automatically identify torn or intact rotator cuff tendon to assist physicians in diagnosing rotator cuff lesions through ultrasound.

Methods: Between 2020 and 2021, patients who experienced shoulder pain for over 3 months and had both ultrasound and MRI examinations were categorized into torn and intact group. To ensure balanced training, we included the same number of patients on both groups.

View Article and Find Full Text PDF

Epitaxy Orientation and Kinetics Diagnosis for Zinc Electrodeposition.

ACS Nano

December 2024

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.

An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.

View Article and Find Full Text PDF

Enhanced MRI-based brain tumor segmentation and feature extraction using Berkeley wavelet transform and ETCCNN.

Digit Health

December 2024

School of Computer Science & Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh, India.

Objective: Brain tumors are abnormal growths of brain cells that are typically diagnosed via magnetic resonance imaging (MRI), which helps to discriminate between malignant and benign tumors. Using MRI image analysis, tumor sites have been identified and classified into four distinct tumor categories: meningioma, glioma, not tumor, and pituitary. If a brain tumor is not detected in its early stages, it could progress to a severe level or cause death.

View Article and Find Full Text PDF

Purpose: Metal-ceramic screw-retained implant restorations persist as a fundamental choice in specific clinical scenarios. Little is known about the effects of fabrication steps and aging on their structural properties. This study aimed to investigate how laboratory fabrication procedures and thermomechanical loading affect the structural properties of screw-retained metal-ceramic implant restorations.

View Article and Find Full Text PDF

Background: Patients' comfort level during the injection procedure affects the quality of care. However, the literature does not provide a valid, reliable, and specific measurement tool to measure this level.

Objective: The present study aimed to develop a valid and reliable measurement tool to determine patients' comfort levels during the injection procedure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!