Lithium-ion (Li-ion) batteries are crucial in numerous applications, including portable electronics, electric vehicles, and energy storage systems. Electrochemical Impedance Spectroscopy (EIS) is a powerful technique for characterizing batteries, providing valuable insights into charge transfer kinetics like ion diffusion and interfacial reactions. However, obtaining comprehensive and diverse datasets for battery State of Charge (SoC) studies remains challenging due to the complex nature of battery operations and the time-intensive testing process. This paper presents a novel and original EIS dataset specifically designed for 600 mAh capacity Lithium Iron Phosphate (LFP) batteries at various SoC levels. The dataset includes repeated EIS measurements using different battery discharging cycles, allowing researchers to examine the frequency domain properties and develop data-driven algorithms for assessing battery SoC and predicting performance. The data acquisition system employs a battery specific impedance meter and an electronic load, ensuring accurate and controlled measurements. The dataset, comprising EIS measurements from multiple LFP batteries, serves as a valuable resource for researchers in the fields of battery technology, electrochemistry, power sources, and energy storage. Moreover, industries such as consumer electronics, power systems, and electric transportation can benefit from the dataset's insights for effectively managing rechargeable battery devices. The presented dataset expands the scope of impedance spectroscopy measurements and holds significant potential for future applications and advancements in Li-ion battery technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639334 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.110947 | DOI Listing |
All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.
View Article and Find Full Text PDFSmall
January 2025
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.
View Article and Find Full Text PDFHeliyon
December 2024
Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain.
In this research work, four distinct WO electrodes were synthesized and coated with three different polymers, known as polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) in poly(4-styrenesulfonate) (PEDOT:PSS) and polyaniline (PANi), using electropolymerization techniques. The morphological features of the samples were thoroughly characterized through Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) analyses. Additionally, contact angle measurements and electrochemical characterizations were used to verify the performance of each electrode, aiding in the prediction of their suitability for energy storage applications in lithium-ion batteries.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!