Optical interconnects, leveraging surface plasmon modes, are revolutionizing high-performance computing and AI, overcoming the limitations of electrical interconnects in speed, energy efficiency, and miniaturization. These nanoscale photonic circuits integrate on-chip light manipulation and signal conversion, marking significant advancements in optoelectronics and data processing efficiency. Here, we present a novel plasmonic interconnect circuit, by introducing refractive index matching layer, the device supports both pure SPP and different hybrid modes, allowing selective excitation and transmission based on light wavelength and polarization, followed by photocurrent conversion. We optimized the coupling gratings to fine-tune transmission modes around specific near-infrared wavelengths for effective electrical detection. Simulation results align with experimental data, confirming the device's ability to detect complex optical modes. This advancement broadens the applications of plasmonic interconnects in high-speed, compact optoelectronic and sensor technologies, enabling more versatile nanoscale optical signal processing and transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636411 | PMC |
http://dx.doi.org/10.1515/nanoph-2024-0298 | DOI Listing |
Light Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Perovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell.
View Article and Find Full Text PDFNanophotonics
November 2024
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
Optical interconnects, leveraging surface plasmon modes, are revolutionizing high-performance computing and AI, overcoming the limitations of electrical interconnects in speed, energy efficiency, and miniaturization. These nanoscale photonic circuits integrate on-chip light manipulation and signal conversion, marking significant advancements in optoelectronics and data processing efficiency. Here, we present a novel plasmonic interconnect circuit, by introducing refractive index matching layer, the device supports both pure SPP and different hybrid modes, allowing selective excitation and transmission based on light wavelength and polarization, followed by photocurrent conversion.
View Article and Find Full Text PDFLaser Photon Rev
December 2024
Énergie, Matériaux et Télécommunications Institut National de la Recherche Scientifique Montréal H5A 1K6 Canada.
The rapid advancements in machine learning have exacerbated the interconnect bottleneck inherent in binary logic-based computing architectures. An interesting approach to tackle this problem involves increasing the information density per interconnect, i.e.
View Article and Find Full Text PDFNanophotonics
March 2024
Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
Nanoporous metals are a class of nanostructured materials finding extensive applications in multiple fields thanks to their unique properties attributed to their high surface area and interconnected nanoscale ligaments. They can be prepared following different strategies, but the deposition of an arbitrary pure porous metal is still challenging. Recently, a dry synthesis of nanoporous films based on the plasma treatment of metal thin layers deposited by physical vapour deposition has been demonstrated, as a general route to form pure nanoporous films from a large set of metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!