Hierarchical supramolecular frameworks are being designed and constructed for various applications, yet the controlled assembly and process understanding incorporating giant building blocks remains a great challenge. Here, we report a strategy of "rivet" substitution and "hinge" linkage for the controlled assembly of the hierarchical supramolecular framework. The replacement of two "rivet" ethylene glycol (EG) molecules for triangular prism [Zn] (a small block in 1) with a 1,3-propanediol (PDO) provides space for a "hinge" linkage from adjacent ligands, thus providing a hierarchical (from micro- to mesopores, from the internal cavity to external surface) supramolecular framework (2) based on a coordinative subblock with the record number of zinc ions ([Zn]). Time-dependent powder X-ray diffraction and ESI-MS technology were used to assess the evolution process: logically progressing from [Zn] to [Zn], then to [Zn], and finally to [Zn]. The sequential transformation entails two types of half-opening cavities and two types of internal microcages. Further aggregation of [Zn] in dia topology engenders the formation of a one-dimensional channel (10 Å), and an additional mesocage with a volume of 16 × 16 × 55 Å. The diverse pore system exhibits an impressive uptake capability (3.19 g g) for iodine vapor at 75 °C and effective ethylene purification. Our investigations represent a valuable avenue for assembling a giant subblock and hierarchical supramolecular framework, facilitating multi-functional molecular accommodation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639904PMC
http://dx.doi.org/10.1039/d4sc04474fDOI Listing

Publication Analysis

Top Keywords

hierarchical supramolecular
16
supramolecular framework
16
[zn]
8
controlled assembly
8
"hinge" linkage
8
[zn] [zn]
8
hierarchical
5
supramolecular
5
evolution [zn]
4
[zn] record-high
4

Similar Publications

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

Fluoride binding-modulated supramolecular chirality of urea-containing triarylamine and its photo-manifestation.

Nanoscale

January 2025

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.

In recent years, the regulation of anion-mediated chiral assemblies has gained significant interest. This study investigated the modulation of supramolecular chiroptical signals and chiral assembled structures in a triarylamine system containing a urea moiety through fluoride ion-urea bond interactions, aiming to understand the chiral sense amplification in supramolecular assemblies. Chiral triarylamine derivatives containing urea or amide units were synthesized and the self-assemblies were examined in the absence and presence of fluoride ions.

View Article and Find Full Text PDF

Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!