Structural basis for gene silencing by siRNAs in humans.

bioRxiv

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Published: December 2024

AI Article Synopsis

  • Small interfering RNAs (siRNAs) interact with human Argonaute2 (hAgo2) to enable targeted gene silencing through mRNA cleavage, but previous structural details of this process were not well understood.
  • The study demonstrates that altering the binding of siRNA's 3'-end by hAgo2 enhances target RNA cleavage and stabilizes the enzyme's catalytic form, leading to important structural insights.
  • A detailed cryo-EM reconstruction at 3.16 Å resolution reveals key catalytic residues and mechanisms involved in the cleavage process, which could inform future therapeutic designs targeting gene regulation.

Article Abstract

Small interfering RNAs (siRNAs) guide mRNA cleavage by human Argonaute2 (hAgo2), leading to targeted gene silencing. Despite their laboratory and clinical impact, structural insights into human siRNA catalytic activity remain elusive. Here, we show that disrupting siRNA 3'-end binding by hAgo2 accelerates target cleavage and stabilizes its catalytic conformation, enabling detailed structural analysis. A 3.16 Å global resolution cryo-EM reconstruction reveals that distortion of the siRNA-target duplex at position 6 allows target RNA entry into the catalytic cleft and shifts Lysine-709, a previously unrecognized catalytic residue, into the active site. A pyrimidine at target nucleotide t10 positions another unrecognized catalytic residue, Arginine-710, for optimal cleavage. Expansion of the guide-target duplex major groove docks the scissile phosphate for hydrolysis and subsequent groove compression after position 16 permits target RNAs to exit the catalytic cleft. These findings reveal how hAgo2 catalyzes siRNA target hydrolysis, providing a high-resolution model for therapeutic design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643337PMC
http://dx.doi.org/10.1101/2024.12.05.627081DOI Listing

Publication Analysis

Top Keywords

gene silencing
8
catalytic cleft
8
unrecognized catalytic
8
catalytic residue
8
catalytic
6
target
5
structural basis
4
basis gene
4
silencing sirnas
4
sirnas humans
4

Similar Publications

PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in , PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues.

View Article and Find Full Text PDF

Brain injury represents the leading cause of mortality and disability after cardiopulmonary resuscitation (CPR) from cardiac arrest (CA), in which the accumulation of dying cells aggravate tissue injury by releasing proinflammatory intracellular components. Microglia play an essential role in maintaining brain homeostasis via milk fat globule epidermal growth factor 8 (MFG-E8)-opsonized efferocytosis, the engulfment of dying cells and debris. This study investigates whether potentiating microglia efferocytosis by MFG-E8 provides neuroprotection after CA/CPR.

View Article and Find Full Text PDF

Recent Insights into Nano-mediated siRNA Drug Delivery.

Curr Drug Metab

December 2024

Department of Pharmaceutics, Sri Shanmugha College of Pharmacy, Sankari Tiruchengode Main Road, Pullipalayam, Morur (PO), Sankari, Salem, Tamil Nadu, Tamil Nadu, India.

Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers.

View Article and Find Full Text PDF

Background: Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.

View Article and Find Full Text PDF

Background: CRISPR is widely used to silence genes by inducing mutations expected to nullify their expression. While numerous computational tools have been developed to design single-guide RNAs (sgRNAs) with high cutting efficiency and minimal off-target effects, only a few tools focus specifically on predicting gene knockouts following CRISPR. These tools consider factors like conservation, amino acid composition, and frameshift likelihood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: