Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Gram-negative pathogen, , poses a serious threat to human health due to its role in nosocomial infections that are resistant to treatment with current antibiotics. Despite this, our understanding of fundamental biology remains limited, as many essential genes have not been experimentally characterized. These essential genes are critical for bacterial survival and, thus, represent promising targets for drug discovery. Here, we systematically probe the function of essential genes by screening a CRISPR interference knockdown library against a diverse panel of chemical inhibitors, including antibiotics. We find that most essential genes show chemical-gene interactions, allowing insights into both inhibitor and gene function. For instance, knockdown of lipooligosaccharide (LOS) transport genes increased sensitivity to a broad range of chemicals. Cells with defective LOS transport showed cell envelope hyper-permeability that was dependent on continued LOS synthesis. Using phenotypes across our chemical-gene interaction dataset, we constructed an essential gene network linking poorly understood genes to well-characterized genes in cell division and other processes. Finally, our phenotype-structure analysis identified structurally related antibiotics with distinct cellular impacts and suggested potential targets for underexplored inhibitors. This study advances our understanding of essential gene and inhibitor function, providing a valuable resource for mechanistic studies, therapeutic strategies, and future key targets for antibiotic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643038 | PMC |
http://dx.doi.org/10.1101/2024.12.05.627103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!