TDP-43 is linked to human diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Expression of TDP-43 in yeast is known to be toxic, cause cells to elongate, form liquid-like aggregates, and inhibit autophagy and TOROID formation. Here, we used the yeast model of disorders of inborn errors of metabolism, previously shown to lead to intracellular adenine accumulation and adenine amyloid-like fiber formation, to explore interactions with TDP-43. Results show that the double deletion shifts the TDP-43 aggregates from a liquid-like, toward a more amyloid-like, state. At the same time the deletions reduce TDP-43's effects on toxicity, cell morphology, autophagy, and TOROID formation without affecting the level of TDP-43. This suggests that the liquid-like and not amyloid-like TDP-43 aggregates are responsible for the deleterious effects in yeast. How the deletions alter TDP-43 aggregate formation is not clear. Possibly, it results from adenine/TDP-43 fiber interactions as seen for other heterologous fibers. The work offers new insights into the potential interactions between metabolite-based amyloids and pathological protein aggregates, with broad implications for understanding protein misfolding diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643018 | PMC |
http://dx.doi.org/10.1101/2024.12.03.626668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!