Non-standard amino acids (nsAAs) that are L-phenylalanine derivatives with aryl ring functionalization have long been harnessed in natural product synthesis, therapeutic peptide synthesis, and diverse applications of genetic code expansion. Yet, to date these chiral molecules have often been the products of poorly enantioselective and environmentally harsh organic synthesis routes. Here, we reveal the broad specificity of multiple natural pyridoxal 5'-phosphate (PLP)-dependent enzymes, specifically an L-threonine transaldolase, a phenylserine dehydratase, and an aminotransferase, towards substrates that contain aryl side chains with diverse substitutions. We exploit this tolerance to construct a one-pot biocatalytic cascade that achieves high-yield synthesis of 18 diverse L-phenylalanine derivatives from aldehydes under mild aqueous reaction conditions. We demonstrate addition of a carboxylic acid reductase module to this cascade to enable the biosynthesis of L-phenylalanine derivatives from carboxylic acids that may be less expensive or less reactive than the corresponding aldehydes. Finally, we investigate the scalability of the cascade by developing a lysate-based route for preparative-scale synthesis of 4-formyl-L-phenylalanine, a nsAA with a bio-orthogonal handle that is not readily market-accessible. Overall, this work offers an efficient, versatile, and scalable route with the potential to lower manufacturing cost and democratize synthesis for many valuable nsAAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643118 | PMC |
http://dx.doi.org/10.1101/2024.12.06.627276 | DOI Listing |
J Org Chem
January 2025
Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States.
A scalable, seven step synthesis is reported for a trifluoromethyl toluene protected sulfonated phenylalanine building block whose utility was demonstrated in the synthesis of four CXCR4-derived sulfonopeptides. When compared to a conventional trichloroethyl protected building block, overall yield was improved by up to 4-fold. We believe this building block will prove to be of significant value for the synthesis of a variety of peptide targets containing phenylalanine sulfonate, a bioisostere of tyrosine sulfate, enabling orthogonal protection strategies and improving synthetic efficiency and yield.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
Purpose: To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis.
Methods: In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing.
Eur J Med Chem
January 2025
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:
Foods
December 2024
Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China.
Hyperuricemia, a disorder of purine metabolism associated with cardiovascular disease, gout, and kidney disease, can be alleviated by food-derived peptides. However, the precise mechanisms remain unclear, hindering their development. This study reviews uric acid-lowering peptides from various sources, focusing on two pathways: inhibiting uric acid production and promoting excretion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!