The deployment of Li-ion batteries covers a wide range of energy storage applications, from mobile phones, e-bikes, electric vehicles (EV) to stationary energy storage systems. However, safety issue such as thermal runaway is always one of the most important concerns preventing Li-ion batteries from further market penetration. A standardized single-side indentation test protocol was developed to mechanically induce an internal short-circuit. The cell voltage, compressive load, indenter stroke, and temperature at the indentation point are measured in time series. The test data of each cell, along with cell parameters such as dimensions, mass, chemistry, state of charge (SOC), capacity, are integrated to calculate a thermal runaway severity score from 0 to100. Complete data collection process including the original measured record, test method, severity score calculation scheme is presented in this article. The thermal runaway severity analysis and the more than 100 tested Li-ion battery records provide a good data source for further comparison and ranking of thermal runaway risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639431PMC
http://dx.doi.org/10.1016/j.dib.2024.110609DOI Listing

Publication Analysis

Top Keywords

thermal runaway
20
li-ion batteries
12
energy storage
8
runaway severity
8
severity score
8
thermal
5
runaway
5
dataset mechanically
4
mechanically induced
4
induced thermal
4

Similar Publications

A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.

ACS Appl Mater Interfaces

January 2025

Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.

Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.

View Article and Find Full Text PDF

Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Key Laboratory of Lightweight Composite, Shanghai Engineering Research Center of Nano Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China.

Flammability is a significant challenge in polymer-based electronics. In this regard, triboelectric nanogenerators (TENGs) have enabled a safe means for harvesting mechanical energy for conversion into electrical energy. However, most existing polymers used for TENGs are sourced from petroleum-based raw materials and are highly flammable, which can further accelerate the spread of fire and harm the ecological environment.

View Article and Find Full Text PDF

Dataset of mechanically induced thermal runaway measurement and severity level on Li-ion batteries.

Data Brief

August 2024

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

The deployment of Li-ion batteries covers a wide range of energy storage applications, from mobile phones, e-bikes, electric vehicles (EV) to stationary energy storage systems. However, safety issue such as thermal runaway is always one of the most important concerns preventing Li-ion batteries from further market penetration. A standardized single-side indentation test protocol was developed to mechanically induce an internal short-circuit.

View Article and Find Full Text PDF
Article Synopsis
  • The polypropylene (PP) separator in lithium-ion batteries is prone to thermal runaway, which limits its use in devices like electric vehicles and energy storage systems.
  • Researchers discovered that applying hydroxypropyl methylcellulose (HPMC) on the PP separator allows it to form a chiral nematic liquid crystal phase, enhancing battery safety by improving temperature distribution during operation.
  • The new HPMC-coated separator not only prevents thermal runaway during extreme testing but also demonstrates excellent cycling stability, allowing batteries to function effectively for over 1000 cycles, indicating a promising direction for future lithium-ion battery research.
View Article and Find Full Text PDF

A Pullulan polysaccharide-based flame-retardant polyelectrolyte hydrogel for high-safety flexible zinc ion capacitors.

Int J Biol Macromol

January 2025

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. Electronic address:

Potential safety hazards such as leakage, flammability and thermal runaway of liquid electrolytes in conventional energy storage devices have seriously hindered their further development. In this work, a flame-retardant polyacrylamide/pullulan/phytic acid (PAM/PUL/PA) hydrogel electrolyte is prepared by using PA as flame-retardant additive, PAM as main polymer chain by one-step radical polymerization method. The PAM/PUL/PA hydrogel shows good flame-retardant properties with limiting oxygen index of up to 58 %, high mechanical performance with stretch up to 1535 % and 92 kPa tensile stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!