Nowadays, the scientific community and industry are increasingly pressed to provide solutions for developing compact and highly-performing trace-gas sensors for several applications of crucial importance, such as environmental monitoring or medical diagnostics. In this context, this work describes a novel configuration, making use of a mid-IR spectrophone combining the compactness of a photo-acoustic setup, a non-conventional micro-electro-mechanical (MEMS) acousto-to-voltage transducer, and the sensitivity enhancement given by a cost-effective and easy-to-build dual-tube resonator configuration. In the optimal condition of sample pressure, the system developed in this work can achieve a minimum detection limit (MDL) equal to 0.34 ppb when averaging up to 10 s. Compared with previous literature of single-pass photoacoustic-based sensors for N O, this corresponds to a significant improvement both for the achieved normalized noise equivalent absorption coefficient (NNEA) equal to 1.41 × 10 cm WHz , and for a Noise-Equivalent-Concentration (NEC) of 1 ppb obtained at 1 s of averaging time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639353PMC
http://dx.doi.org/10.1016/j.pacs.2024.100644DOI Listing

Publication Analysis

Top Keywords

ppb averaging
8
dual-tube mems-based
4
mems-based spectrophone
4
spectrophone sub-ppb
4
sub-ppb mid-ir
4
mid-ir photoacoustic
4
photoacoustic gas
4
gas detection
4
detection nowadays
4
nowadays scientific
4

Similar Publications

The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea.

View Article and Find Full Text PDF

Background: Scandium-47 is the therapeutic counterpart to the diagnostic radionuclides, Sc and Sc. Together, these form elementally matched theranostic nuclide pairs, but their incorporation into radiopharmaceuticals requires developing production techniques leading to radioscandium isotopes with high chemical and radionuclidic purity. Previous Sc production methods involved expensive, enriched titanium targets that require additional procedures for target recovery.

View Article and Find Full Text PDF

Cantilever-enhanced dual-comb photoacoustic spectroscopy.

Photoacoustics

August 2024

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.

Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a non-resonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone.

View Article and Find Full Text PDF

Dual-tube MEMS-based spectrophone for sub-ppb mid-IR photoacoustic gas detection.

Photoacoustics

December 2024

ASI Agenzia Spaziale Italiana - Centro di Geodesia Spaziale, Località Terlecchia, Matera, 75100, Italy.

Nowadays, the scientific community and industry are increasingly pressed to provide solutions for developing compact and highly-performing trace-gas sensors for several applications of crucial importance, such as environmental monitoring or medical diagnostics. In this context, this work describes a novel configuration, making use of a mid-IR spectrophone combining the compactness of a photo-acoustic setup, a non-conventional micro-electro-mechanical (MEMS) acousto-to-voltage transducer, and the sensitivity enhancement given by a cost-effective and easy-to-build dual-tube resonator configuration. In the optimal condition of sample pressure, the system developed in this work can achieve a minimum detection limit (MDL) equal to 0.

View Article and Find Full Text PDF

Background: Prenatal exposures to ozone (O) may impact child lung function, including through oxidative stress pathways, contributing to lifelong morbidity. Diet, reflected in oxidative balance scores (OBS), may modify these pathways and is a potential target for interventions to mitigate O effects.

Methods: We examined associations between prenatal exposure to O and child lung function at age 8-9 years via spirometry in the CANDLE cohort within the ECHO-PATHWAYS Consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!