Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic semiconductors have been widely studied owing to their potential applications in various devices, such as field-effect transistors, light-emitting diodes, solar cells, and image sensors. However, they have a limitation of significantly lower carrier mobility compared to silicon, which is a widely used inorganic semiconductor. Therefore, to address such limitations, these molecules should be further explored. Hole reorganization energy has been known to influence carrier mobility; that is, lower energy results in higher mobility. This study uses Bayesian optimization (BO) to identify molecules with low hole reorganization energies. While several acquisition functions (AFs), including probability of improvement, expected improvement, and mutual information, have been proposed for use in BO, it is well established that the performance of AFs can vary depending on the data set. We evaluate the performance of AFs applied to a data set of organic semiconductor molecules and propose a novel approach that alternates the use of AFs in the BO process. Our findings conclude that alternating AFs in BO enhance the stability of the search for molecules with low reorganization energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635491 | PMC |
http://dx.doi.org/10.1021/acsomega.4c09124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!