Fermented soy products: A review of bioactives for health from fermentation to functionality.

Compr Rev Food Sci Food Saf

Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany.

Published: January 2025

The increasing prevalence of metabolic diseases and the global drive toward achieving Sustainable Development Goals (SDGs) underscore the need for sustainable, nutrient-dense foods. Soybeans (Glycine max), a critical global crop, offer promising solutions; however, their predominant use as animal feed raises concerns regarding food security and environmental sustainability. Fermented soy products-including tempeh, natto, and miso-are rich in bioactive compounds such as peptides and isoflavones, which offer potential therapeutic effects and hold cultural and nutritional significance. These fermented products provide bioactive profiles with unique health-promoting properties. This review critically examines the bioactive compounds generated through fermentation, focusing on their bioconversion pathways in the gastrointestinal tract and their metabolic implications for human health. Recent consumer demand for novel food ingredients with additional biological benefits has fueled research into advanced extraction techniques, enhancing the functional applications of bioactive compounds from these soy-based products. This review further explores innovations in extraction methods that improve bioactive yield and sustainability, reinforcing the applicability of these compounds in health-promoting food interventions. The originality of this review lies in its in-depth exploration of the gastrointestinal bioconversion of fermented soy bioactive compounds alongside the latest sustainable extraction methods designed to optimize their use. Future research should aim to refine fermentation and extraction processes, investigate synergistic microbial interactions, and develop environmentally sustainable production methods. These efforts have the potential to position fermented soy products as essential contributors to global nutritional security and sustainable food systems, addressing both public health and environmental needs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.70080DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647071PMC

Publication Analysis

Top Keywords

fermented soy
16
bioactive compounds
16
soy products
8
products review
8
extraction methods
8
bioactive
6
fermented
5
sustainable
5
compounds
5
products
4

Similar Publications

Fermented soy products: A review of bioactives for health from fermentation to functionality.

Compr Rev Food Sci Food Saf

January 2025

Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany.

The increasing prevalence of metabolic diseases and the global drive toward achieving Sustainable Development Goals (SDGs) underscore the need for sustainable, nutrient-dense foods. Soybeans (Glycine max), a critical global crop, offer promising solutions; however, their predominant use as animal feed raises concerns regarding food security and environmental sustainability. Fermented soy products-including tempeh, natto, and miso-are rich in bioactive compounds such as peptides and isoflavones, which offer potential therapeutic effects and hold cultural and nutritional significance.

View Article and Find Full Text PDF

Background: Chenpi extract (CPE) is rich in polyphenols, flavonoids, and volatile flavor compounds, and possesses numerous healthy biological effects. However, the low stability and bioaccessibility of CPE significantly limits its application in food development.

Results: In this study, CPE microcapsules were prepared using soybean oligopeptide (SOP), maltodextrin (MD), soybean protein isolate (SPI), and citrus insoluble dietary fiber (CIDF) as the encapsulants.

View Article and Find Full Text PDF

High-Throughput Screening for Enhanced Thermal Stability of Inherently Salt-Tolerant l-Glutaminase and Its Efficient Expression in .

J Agric Food Chem

December 2024

Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.

In addressing the challenges posed by extended fermentation cycles and high-salt conditions in high-salt liquid-state fermentation soy sauce (HLFSS) production, a high-throughput screening method was devised to identify thermally stable l-glutaminase mutants. This study yielded mutants A146D and A51D, exhibiting enhanced thermal stability. Computer-aided analysis revealed that these mutations introduced additional forces, compacting the protein structure and lowering the Gibbs free energy, thereby improving thermostability.

View Article and Find Full Text PDF

The airing process of sauce-flavor Baijiu is a critical operation that serves the functions of cooling, homogenizing, and facilitating microbial proliferation and metabolism. Comprehensive analysis of physicochemical parameters, bacterial and fungal community of fermented grains, and volatile flavor compounds of soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors among traditional (CT) and two different mechanized (JXA and JXB) airing operations were investigated. The results indicated that the dynamic variation patterns of moisture content, total titratable acidity, starch content, lactic acid, acetic acid, pH, and dominated microbial composition among CT, JXA, and JXB were similar, while minor bacterial genera with relative abundance including unclassified Micrococcineae, unclassified Rhizobiales, etc, and dominated fungi such as Torulaspora, Hyphopichia, Candida, Pichia, and Penicillium were profoundly influenced by mechanized airing operations, especially by JXB.

View Article and Find Full Text PDF

Unveiling the microbiota-mediated impact of different dietary proteins on post-digestive processes: A simulated in vitro approach.

Food Res Int

December 2024

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Protein digestion and microbial metabolism play crucial roles in overall health. However, the mechanisms that differentiate the digestion and metabolism of dietary proteins from different sources in the organism remain poorly understood. This study investigated the digestive properties and microbial fermentation of various animal proteins (chicken, pork, beef, and casein) and plant proteins (soy bean, mung bean, kidney bean, rice, and wheat) in an in vitro simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!