LPDE biodegradation promoted by a novel additive based on silica nanoparticles: Structural, microbial and ecotoxicological characterization.

Chemosphere

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, RS, Brazil. Electronic address:

Published: December 2024

This study developed a biodegrading additive based on nanosilica and modified by cellulase enzyme in the presence of citric acid and sodium citrate. The additive was tested as a facilitator for biodegradation of the commercial low-density polyethylene (LDPE) in soil. Enzyme immobilization was confirmed by enzymatic assays. Moreover, additive and nanocomposites were characterized by spectroscopic and microscopic techniques. To assess the role of additive in biodegradation, CO production in soil was measured at 30 °C for 83 days. Biodegraded nanocomposites were cultivated to isolate possible LDPE-biodegrading microorganisms. Ecotoxicity of the studied materials was evaluated on cucumber (Cucumis sativus L.). CO production from LDPE/additive sample was similar to the starch (1055 ± 14 mg and 1078 ± 28 mg, respectively), and higher than pure LDPE (882 ± 34 mg) and LDPE/nanosilica (992 ± 30 mg). Although the presence of LDPE/nanosilica and LDPE/additive led to root length reduction of 24.3 ± 2.3% compared to the control (soil), the accumulation of root biomass was not affected. Furthermore, the nanocomposites did not cause harmful effects on seedling growth. Nine microbial isolates were recovered from biodegraded samples and identified by molecular techniques. It was demonstrated for the first time the LDPE biodegradation potential by four bacterial isolates (Bacillus safensis FO-36b, Lysinibacillus capsici, Bacillus albus N35-10-2 and Bacillus paranthracis Mn5) and two fungal isolates (Cladosporium halotolerans clone EF_526 and Cladosporium sp. MV-2018B isolate MLT-27). Our study sheds light on the biodegradation of commercial LDPE by soil microorganisms using a novel LDPE-biodegrading additive nanocomposite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143943DOI Listing

Publication Analysis

Top Keywords

additive based
8
biodegradation commercial
8
ldpe soil
8
additive
6
lpde biodegradation
4
biodegradation promoted
4
promoted novel
4
novel additive
4
based silica
4
silica nanoparticles
4

Similar Publications

Cellulite is an aesthetically distressing skin condition occurring in 80-90% of females and manifesting as dimples and depressions, producing an uneven surface to the skin. Our aim was to evaluate the effect of combined oral consumption of two dietary supplements based on chokeberry and tart cherry juices over a period of 32 days on cellulite reduction. Twenty women aged 21-49 with a cellulite grade of 1-2 according to the Nurnberger-Muller scale were participating in the study.

View Article and Find Full Text PDF

Stone-event-free survival after retrograde intrarenal surgery: is the stone-free-status so relevant for the future outcomes?

Int Urol Nephrol

December 2024

Department of Urology, Unidade Local de Saúde de Santo António, Centro Hospitalar Universitário Do Porto, 8th floor, Largo Do Prof. Abel Salazar, 4099-001, Porto, Portugal.

Introduction: The primary aim of stone treatment is to achieve stone-free status. Residual fragments can cause stone growth, recurrence, urinary tract infections, and ureteric obstruction. Our goal was to describe the natural history of stone burden after retrograde intrarenal surgery (RIRS) based on stone-free status (SFS), evaluating stone growth and stone-events.

View Article and Find Full Text PDF

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements.

J Am Chem Soc

December 2024

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.

View Article and Find Full Text PDF

Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!