AI Article Synopsis

  • The study investigated whether BGP-15 can enhance sperm quality and protect against cell damage in both mouse and human sperm.
  • Mice sperm were treated with BGP-15 and assessed for quality, with findings showing improved motility and reduced DNA oxidation in older specimens.
  • Human sperm exposed to oxidative stress also benefited from BGP-15, with the treatment improving sperm parameters, reinforcing its potential role in fertility treatments.

Article Abstract

Objective: To study the efficacy of mitochondrial activator BGP-15 to preserve sperm quality and competence against cellular damage.

Design: Spermatozoa from mice or humans were treated in vitro with BGP-15 and sperm quality markers assessed. Spermatozoa from young (8-12 weeks old) or reproductively old (>14 months old) mice were treated with BGP-15 for 1h and assessed for sperm quality and pre-implantation embryo development after in vitro fertilization (IVF). The safety of BGP-15 on offspring outcomes was assessed through embryo transfers. In parallel studies, spermatozoa from healthy (not infertile) men were incubated in hydrogen peroxide, to induce oxidative stress, plus increasing doses of BGP-15 , and sperm quality evaluated. Spermatozoa from patients undergoing assisted reproductive technology treatment (ART) were incubated in the optimized dose of BGP-15 for 30 min and sperm quality assessed.

Subjects And Animals: C57BL/6 mice (N=4-15 per group) for sperm quality and embryo development. CBAF1 mice (n=6 per group) produced embryos for transfer. Human spermatozoa were from men with no infertility diagnosis (n=14-20), or men undergoing ART (n=33) at a local fertility clinic.

Exposure: Mouse spermatozoa were treated with 10μM BGP-15. Human spermatozoa were treated with BGP-15 at doses from 1μM to 100μM.

Main Outcome Measures: Sperm quality measures (mouse and human): motility, mitochondrial membrane potential (JC-1 dye), DNA fragmentation ('HALO' assay) and DNA oxidation (8-OHdG immunodetection). Mouse embryo and offspring measures: on-time development after IVF, morphokinetic analysis and blastocyst inner cell mass and trophectoderm cell number; growth and development from birth to 21 days post-natal.

Results: BGP-15 increased sperm motility, increased mitochondrial membrane potential and decreased DNA oxidation in old mice. BGP-15 improved on-time development of 2-cell and blastocyst embryos, and increased ICM blastomere number. Embryos from BGP-15-treated mouse spermatozoa produced normal offspring. In human spermatozoa subjected to in vitro oxidative stress, BGP-15 increased motility by 45% (p=0.03) and prevented DNA fragmentation (by 45%; p<0.0001) and oxidative damage (by 60%; p<0.0001). In spermatozoa from men attending a fertility clinic, BGP-15 increased motility by 12% (p=0.02), and reduced both DNA oxidation and fragmentation by >20% (p<0.05).

Conclusion: BGP-15 protects sperm against cellular damage and has the potential to improve ART outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xfss.2024.12.001DOI Listing

Publication Analysis

Top Keywords

sperm quality
32
bgp-15
12
human spermatozoa
12
sperm
9
spermatozoa
9
mitochondrial activator
8
activator bgp-15
8
quality
8
bgp-15 sperm
8
treated bgp-15
8

Similar Publications

Background: The outcomes of varicocele repair (VR) for severe oligozooasthenoteratozoospermia (OAT) have not been widely examined.

Methods: Assessment of outcomes of VR after severe OAT, employing scoping review of published guidelines, and systematic review of literature. The Newcastle-Ottawa scale appraised the quality of included studies.

View Article and Find Full Text PDF

Male seminal fluid allocation according to socio-sexual context in the South American fruit fly.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

January 2025

Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina.

During copulation male insects transfer sperm and seminal fluids, including accessory gland proteins (Acps) to females, produced in the accessory glands (AGs). These Acps influence female behavior and physiology, inhibiting sexual receptivity, promoting ovulation and/or oviposition. The theory of ejaculate allocation postulates that production is costly; therefore, males strategically allocate ejaculates based on perception of sperm competition and quality and availability of females.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) are responsible for the majority of sexually transmitted infections (STIs), some of which are oncogenic and can cause oropharyngeal or genital cancers. The HPV prevalence at the genital level varies according to the population studied but is higher in the seminal fluid of men suffering from idiopathic infertility than in the general population. The involvement of HPV in male infertility is supported by several studies suggesting that this virus can affect sperm quality by altering sperm DNA integrity, motility, number, viability, and morphology, and by inducing the production of anti-sperm antibodies (ASAs).

View Article and Find Full Text PDF

End of the Season Blues: Senescence and Reproductive Trade-Offs in Male Scorpions.

Insects

November 2024

Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba Av. Vélez Sarsfield 299, Córdoba X5000, Argentina.

Seasonal reproductive dynamics and senescence have profound impacts on male fertility, yet these processes remain understudied in scorpions. This study investigates how reproductive parameters-such as testicular mass, sperm quantity, and viability-change over the course of the reproductive season in males. We found that early-season males exhibited higher sperm quality and testicular mass compared to their older counterparts, suggesting that senescence, rather than reproductive effort, drives the decline in sperm viability.

View Article and Find Full Text PDF

Male infertility is a significant global health issue, comprising approx. 50% of all infertility cases. Semen cryopreservation, a critical component of assisted reproductive technologies (ARTs), is a method commonly used in a wide range of situations, including gonadotoxic treatments such as radiation or chemotherapy, hazardous occupational exposures, and various medical conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!